Posts

New Post

Nash Equilibrium In Game Theory ~xRay Pixy

Image
 Video Link  CLICK HERE... Learn Nash Equilibrium In Game Theory Step-By-Step Using Examples. Video Chapters: Nash Equilibrium  00:00 Introduction 00:19 Topics Covered 00:33 Nash Equilibrium  01:55 Example 1  02:30 Example 2 04:46 Game Core Elements 06:41 Types of Game Strategies 06:55  Prisoner’s Dilemma  07:17  Prisoner’s Dilemma Example 3 09:16 Dominated Strategy  10:56 Applications 11:34 Conclusion The Nash Equilibrium is a concept in game theory that describes a situation where no player can benefit by changing their strategy while the other players keep their strategies unchanged.  No player can increase their payoff by changing their choice alone while others keep theirs the same. Example : If Chrysler, Ford, and GM each choose their production levels so that no company can make more money by changing their choice, it’s a Nash Equilibrium Prisoner’s Dilemma : Two criminals are arrested and interrogated separately. Each has two ...

GWO Python Code || Grey Wolf Optimizer in Python || ~xRay Pixy

Image
SOURCE CODE import numpy as np import tkinter as tk import matplotlib.pyplot as plt from tkinter import messagebox def initialization (PopSize,D,LB,UB):     SS_Boundary = len(LB) if isinstance(UB,(list,np.ndarray)) else 1     if SS_Boundary ==1:         Positions = np.random.rand(PopSize,D)*(UB-LB)+LB     else:         Positions = np.zeros((PopSize,D))         for i in range(D):             Positions[:,i]=np.random.rand(PopSize)*(UB[i]-LB[i])+LB[i]     return Positions def GWO(PopSize,MaxT,LB,UB,D,Fobj):     Alpha_Pos = np.zeros(D)     Alpha_Fit = np.inf     Beta_Pos = np.zeros(D)     Beta_Fit = np.inf     Delta_Pos = np.zeros(D)     Delta_Fit = np.inf     Positions = initialization(PopSize,D,UB,LB)     Convergence_curve = np.zeros(MaxT)     l = 0     while l...

Implement TSP in Python ||Travelling Salesman Problem|| ~xRay Pixy

Image
Travelling salesman problem implementation in Python. Video Chapters: 00:00 Introduction 00:34 TSP Code 06:51 Calculate the Total Distance 11:17 Find Out the Optimal Route and Minimum Distance 15:03 Output 16:00 Conclusion

PSO Python Code || Particle Swarm Optimization in Python || ~xRay Pixy

Image
Particle Swarm Optimization Implementation in Python Video Chapters: 00:00 Introduction 02:01 Code 05:55 Position Initialization 08:06 PSO Main Loop 08:42 Velocity Calculation 10:02 Position Update 10:36 Fitness Evaluation 13:21 Objective Function 17:44 Result 19:00 Conclusion .....................................................SOURCE CODE......................................................................... import random import numpy as np from tkinter import messagebox #Define Class Particles class Particle: def __init__ (self,position): self.position=position self.velocity=np.zeros_like(position) self.best_position=position self.best_fitness=float('inf') def PSO(ObjF,Pop_Size,D,MaxT): swarm_best_position=None swarm_best_fitness=float('inf') particles=[] #Posotion Initialization position=np.random.uniform(-0.5,0.5,D) particle=Particle(position) particles.append(particle) #Fit...

JavaScript Dynamic Barcode Generator || Step-By-Step || ~xRay Pixy

Image
SOURCE CODE <html> <head> <title>Dynamic Barcode Generator</title> <link rel="stylesheet" href="bar.css"/>  <script src="https://cdn.jsdelivr.net/npm/jsbarcode@3.11.3/dist/JsBarcode.all.min.js"></script> </head> <body> <center> <h1>Dynamic Barcode Generator</h1> <div id="box">   <input id="barcode-input" type ="text" placeholder="Enter Text for Barcode"/>   <button onclick="BarCodeGenerate()" >Generate Barcode</button> <br><br>   <svg id ="barcode"></svg> </div>   <script>      function BarCodeGenerate(){          var text = document.getElementById("barcode-input").value;          JsBarcode("#barcode",text);      }             </script> </center> </body> </html>

JavaScript Analog Clock || Step-By-Step || ~xRay Pixy

Image
---------------------------- clock.html --------------------------------------- <html> <head> <title>Javascript Analog Clock</title> <link rel ="stylesheet" href="clock.css"> <script src = "clock.js"></script> </head> <body> <div id="clockBox">      <div id="hour"></div>      <div id="minute"></div>      <div id="second"></div>      <div id="point"></div> </div> </body> </html> ------------------------------ clock.css ----------------------------------------- #clockbox{           height: 650px;           width: 650px;           background: url(clc.png);           background-size:100%;           margin:auto;         } #hour, #minute, #second{      ...

Hunger Games Search Algorithm || Step-By-Step || ~xRay Pixy

Image
Learn Hunger Games Search (HGS) Optimization Algorithm Step-By-Step Hunger Games Search Algorithm Video Chapters: 00:00 Introduction 00:30 About Hunger Games Search Algorithm 06:00 Algorithm Steps 16:00 Conclusion

JavaScript Calculator Step-By-Step ~xRay Pixy

Image
HTML + JAVASCRIPT CODE <html> <head> <title>JavaScript Calculator</title> <link rel="stylesheet" href="calc.css"/> </head> <body> <div class="front"> <form name="form"> <input id="clac" type="text" name="result"><br><br> <input type= "button" value ="1" onclick="form.result.value += '1'"> <input type= "button" value ="2" onclick="form.result.value += '2'"> <input type= "button" value ="3" onclick="form.result.value += '3'"> <input type= "button" value ="+" onclick="form.result.value += '+'"> <br><br> <input type="button" value="4" onclick="form.result.value += '4'"> <input type="button" value="5"...

Dwarf Mongoose Optimization Algorithm || Step-By-Step || ~xRay Pixy

Image
Video Chapters: Dwarf Mongoose Optimization Algorithm 00:00 Introduction 02:10 About Mongoose 03:55 Mongoose Communication 05:00 Mongoose Lifestyle 07:23 Dwarf Mongoose Optimization Algorithm Steps 11:29 Optimization Process Start 16:00 Conclusion New Metaheuristic Optimization Algorithm Dwarf Mongoose Optimization We can use this algorithm to solve different optimization problems as when this algorithm is tested on different continuous, discrete optimization problems it provides efficient results. So, we can use this algorithm to solve complex optimization problems This algorithm is basically inspired by the foraging behavior of mongooses in real life. Dwarf Mongoose Optimizer is introduced in 2022 by Jeffrey and all. It is a swarm intelligence-based optimization algorithm that we can use to solve complex optimization problems. This algorithm provides efficient results in comparison with seven different algorithms as you can see here Particle Swarm Optimizer, Gray wolf O...

Optimization Problems || PART 02 || Design Variables, Constraints, Objec...

Image
Learn how to solve Optimization problems Step-By-Step. Video Chapters: Optimization Problems PART - 02 00:00 Introduction 00:16 Optimization Problems 01:51 Design Variables 02:34 Constraints 03:13 Objective Function 04:57 Conclusion

Fireworks Algorithm For Optimization || Step-By-Step || ~xRay Pixy

Image
Fireworks Algorithm For Optimization Video Link Learn Fireworks Algorithm For Optimization || Step-By-Step || Video Chapters: Firework Algorithm For Optimization 00:00 Introduction 00:55 About Fireworks 04:07 Fireworks Algorithm Steps 05:41 Set Off Fireworks 08:11 Calculate the Total Number of Spark 10:02 Sparks Location Calculation 14:00 conclusion Firework Algorithm For Optimization Key Points It is a Swarm intelligence Based Metaheuristic Algorithm. We can use Fireworks Algorithm to solve complex optimization problems in real life. The Fireworks Algorithm is basically inspired by the explosion process of Fireworks in real life. Fireworks Algorithm mimics this Fireworks explosion behavior to find out the optimal solution. The fireworks algorithm simulates a simple process. 1. Initialize the population for (N) fireworks. 2. Evaluate fireworks performance using an objective function. 3. Set Off N fireworks. 4. Calculate the number of sparks each firework yield and the...

Hybrid Metaheuristic || GA-PSO || Step-By-Step ~xRay Pixy

Image
Hybrid Metaheuristic  Learn Hybrid Metahuristic Step-By-Step (Genetic Algorithm (GA) and Particle Swarm Optimization(PSO)) Hybridization. Hybrid Metahuristic Video Chapters: 00:00 Introduction 00:30 Optimization Problems 02:50 Optimization Process 04:28 Metaheuristic Hybridization 08:56 GA-PSO Hybridization 13:44 Conclusion

Honey Badger Algorithm (HBA) ||Step-By-Step|| ~xRay Pixy

Image
Learn Honey Badger Optimization Algorithm Step-By-Step with Examples. Honey Badger Algorithm Video Chapters: 00:00 Introduction 01:00 About Honey Badger 03:33 Honey Badger Algorithm 07:21 Honey Badger during Digging Mode 10:05 Honey Badger during Honey Mode 12:43 Conclusion

POA - CODE || Pelican Optimization Algorithm Code Implementation ||

Image
Learn Pelican Optimization Algorithm Code Implementation Step-By-Step POA-CODE Video Chapters: 00:00 Introduction 01:22 Test Function Information Program File 02:37 Pelican Optimization Algorithm Program File 11:23 Main Program File 12:30 Conclusion 1.) Test Function Information File function [LB,UB,D,FitF] = test_fun_info(C) switch C case 'F1' FitF = @F1; LB=-100; UB =100; D =30; case 'F2' FitF = @F2; LB=-10; UB =10; D =30; case 'F3' FitF = @F3; LB=0; UB=1; D=3; end end % F1 function R = F1(x) R=sum(x.^2); end % F2 function R = F2(x) R=sum(abs(x))+prod(abs(x)); end 2.) POA File function[Best_Solution,Best_Location,Sol_con_Curve]=POA(PopSize,MaxT,LB,UB,D,FitF) LB=ones(1,D).*(LB); % Lower limit UB=ones(1,D).*(UB); % Upper limit % POPULATION INITIALIZATION PHASE for i=1:D X(:,i) = LB(i)+rand(PopSize,1).*(UB(i) ...

Pelican Optimization Algorithm || Step-By-Step || with Example ~xRay Pixy

Image
Learn Pelican Optimization Algorithm Step-By-Step with Examples. Video Chapters: Introduction: 00:00 Pelicans Behaviors: 00:34 Pelicans Hunting Behavior: 01:47 Pelican Optimization Algorithm: 03:18 Pelican Optimization Algorithm Steps: 06:36 Conclusion: 12:35

Whale Optimization Algorithm Code Implementation || WOA CODE || ~xRay Pixy

Image
Whale Optimization Algorithm Code Implementation Whale Optimization Algorithm Code Files function obj_fun(test_fun) switch test_fun     case 'F1'         x = -100:2:100; y=x;     case 'F2'         x = -10:2:10; y=x; end end function [LB,UB,D,FitFun]=test_fun_info(C) switch C     case 'F1'         FitFun = @F1;         LB = -100;          UB = 100;         D = 30;     case 'F2'         FitFun = @F2;         LB = -10;         UB = 10;         D = 30; end % F1 Test Function     function r = F1(x)         r = sum(x.^2);     end % F2 Test Function     function r = F2(x)         r = sum(abs(x))+prod(abs(x));     end end function Position = initialize(Pop_Size,D,UB,LB) SS_Bo...
More posts