Posts

Showing posts from August 2, 2021

New Post

AI and Deep Learning for Ear Infection Detection ~xRay Pixy

Image
Learn how AI and deep learning revolutionize ear infection detection, enabling accurate, fast, and automated diagnosis using advanced image processing and machine learning techniques. Video Chapters: Ear Infection Detection using AI and DL 00:00 Introduction 00:14 My Experience with Ear Infections 01:15 Topics Covered 02:24 Ear Infections 02:48 Ear Infection Signs 03:55 Ear Infection Preventions 04:29 Ear Infection Types 05:19 Ear Infection Causes 06:14 How Bacteria and Fungus Grow in Ear 07:26 My Mistakes 08:49 Doctors Advise after Ear Infection 09:45 Ear Infection Common Symptoms 10:37 Automated Ear Infection Detection with Deep Learning AI 15:09 Smartphone Otoscopes 16:04 Conclusion Ear fungus, also known as otomycosis , is a fungal infection of the outer ear canal. If an ear infection is not treated on time, it can lead to serious complications.  Hearing Loss – Persistent infections can damage the eardrum and middle ear structures, leading to partial or permanent hearing loss....

PARTICLE SWARM OPTIMIZATION ALGORITHM NUMERICAL EXAMPLE

Image
 PARTICLE SWARM OPTIMIZATION ALGORITHM NUMERICAL EXAMPLE PSO is a computational method that Optimizes a problem. It is a Population-based stochastic search algorithm. PSO is inspired by the Social Behavior of Birds flocking. n Particle Swarm Optimization the solution of the problem is represented using Particles. [Flocking birds are replaced with particles for algorithm simplicity]. Objective Function is used for the performance evaluation for each particle / agent in the current population. PSO solved problems by having a Population (called Swarms) of Candidate Solutions (Particles). Local and global optimal solutions are used to update particle position in each iteration. Particle Swarm Optimization (PSO) Algorithm step-by-step explanation with Numerical Example and source code implementation. - PART 2 [Example 2] 1.) Initialize Population [Current Iteration (t) = 0] Population Size = 4; 𝑥𝑖 : (i = 1,2,3,4) and (t = 0) 𝑥1 =1.3; 𝑥2=4.3; 𝑥3=0.4; 𝑥4=−1.2 2.) Fitness Function u...

Firefly Optimization Algorithm

Image
Firefly algorithm is a swarm-based metaheuristic algorithm that was introduced by Yang. Firefly Algorithm is inspired by the FLASHING Behavior of Fireflies.  Assumptions Fireflies are attracted to each other. Attractiveness is proportional to BRIGHTNESS.  Less Brighter Firefly is attracted to the Brighter Firefly. Attractiveness decrease as the distance between 2 fireflies increase. If brightness for both is the same, fireflies move randomly. New Solutions are generated by Random walks & the Attraction of fireflies. Video Link:  https://youtu.be/QvpEMR-Jp0U Firefly Optimization Algorithm Steps Initialize Parameters. Generate Population of n Fireflies. Calculate Fitness Value for Each Firefly. Check stopping criteria if (CurrentIteration := 1 to MaximumIteration ).  Update Position and Light Intensity for Each Firefly. Report the Best Solution. Initialize Parameters, Population of Fire Fly Swarm. Population Size (n) = 20; Maximum Iteration (Maxt) = 50; Dimension ...
More posts