Posts

Showing posts from August 2, 2021

New Post

Poplar Optimization Algorithm || Step-By-Step || ~xRay Pixy

Image
The Poplar Optimization Algorithm (POA) is a nature-inspired optimization method based on how poplar trees reproduce. It uses sexual propagation (seed dispersal by wind) for exploration and asexual reproduction (cutting and regrowth) for exploitation. Mutation and chaos factors help maintain diversity and prevent premature convergence, making POA efficient for solving complex optimization problems. Learn the Poplar Optimization Algorithm Step-By-Step using Examples. Video Chapters: Poplar Optimization Algorithm (POA) 00:00 Introduction 02:12 POA Applications 03:32 POA Steps 05:50 Execute Algorithm 1 13:45 Execute Algorithm 2 16:38 Execute Algorithm 3 18:15 Conclusion Main Points of the Poplar Optimization Algorithm (POA) Nature-Inspired Algorithm ā€“ Based on the reproductive mechanisms of poplar trees. Two Key Processes : Sexual Propagation (Seed Dispersal) ā€“ Uses wind to spread seeds, allowing broad exploration. Asexual Reproduction (Cuttings) ā€“ Strong branches grow ...

PARTICLE SWARM OPTIMIZATION ALGORITHM NUMERICAL EXAMPLE

Image
 PARTICLE SWARM OPTIMIZATION ALGORITHM NUMERICAL EXAMPLE PSO is a computational method that Optimizes a problem. It is a Population-based stochastic search algorithm. PSO is inspired by the Social Behavior of Birds flocking. n Particle Swarm Optimization the solution of the problem is represented using Particles. [Flocking birds are replaced with particles for algorithm simplicity]. Objective Function is used for the performance evaluation for each particle / agent in the current population. PSO solved problems by having a Population (called Swarms) of Candidate Solutions (Particles). Local and global optimal solutions are used to update particle position in each iteration. Particle Swarm Optimization (PSO) Algorithm step-by-step explanation with Numerical Example and source code implementation. - PART 2 [Example 2] 1.) Initialize Population [Current Iteration (t) = 0] Population Size = 4; š‘„š‘– : (i = 1,2,3,4) and (t = 0) š‘„1 =1.3; š‘„2=4.3; š‘„3=0.4; š‘„4=āˆ’1.2 2.) Fitness Function u...

Firefly Optimization Algorithm

Image
Firefly algorithm is a swarm-based metaheuristic algorithm that was introduced by Yang. Firefly Algorithm is inspired by the FLASHING Behavior of Fireflies.  Assumptions Fireflies are attracted to each other. Attractiveness is proportional to BRIGHTNESS.  Less Brighter Firefly is attracted to the Brighter Firefly. Attractiveness decrease as the distance between 2 fireflies increase. If brightness for both is the same, fireflies move randomly. New Solutions are generated by Random walks & the Attraction of fireflies. Video Link:  https://youtu.be/QvpEMR-Jp0U Firefly Optimization Algorithm Steps Initialize Parameters. Generate Population of n Fireflies. Calculate Fitness Value for Each Firefly. Check stopping criteria if (CurrentIteration := 1 to MaximumIteration ).  Update Position and Light Intensity for Each Firefly. Report the Best Solution. Initialize Parameters, Population of Fire Fly Swarm. Population Size (n) = 20; Maximum Iteration (Maxt) = 50; Dimension ...
More posts