Posts

Showing posts from August 2, 2021

New Post

Nash Equilibrium In Game Theory ~xRay Pixy

Image
 Video Link  CLICK HERE... Learn Nash Equilibrium In Game Theory Step-By-Step Using Examples. Video Chapters: Nash Equilibrium  00:00 Introduction 00:19 Topics Covered 00:33 Nash Equilibrium  01:55 Example 1  02:30 Example 2 04:46 Game Core Elements 06:41 Types of Game Strategies 06:55  Prisoner’s Dilemma  07:17  Prisoner’s Dilemma Example 3 09:16 Dominated Strategy  10:56 Applications 11:34 Conclusion The Nash Equilibrium is a concept in game theory that describes a situation where no player can benefit by changing their strategy while the other players keep their strategies unchanged.  No player can increase their payoff by changing their choice alone while others keep theirs the same. Example : If Chrysler, Ford, and GM each choose their production levels so that no company can make more money by changing their choice, it’s a Nash Equilibrium Prisoner’s Dilemma : Two criminals are arrested and interrogated separately. Each has two ...

PARTICLE SWARM OPTIMIZATION ALGORITHM NUMERICAL EXAMPLE

Image
 PARTICLE SWARM OPTIMIZATION ALGORITHM NUMERICAL EXAMPLE PSO is a computational method that Optimizes a problem. It is a Population-based stochastic search algorithm. PSO is inspired by the Social Behavior of Birds flocking. n Particle Swarm Optimization the solution of the problem is represented using Particles. [Flocking birds are replaced with particles for algorithm simplicity]. Objective Function is used for the performance evaluation for each particle / agent in the current population. PSO solved problems by having a Population (called Swarms) of Candidate Solutions (Particles). Local and global optimal solutions are used to update particle position in each iteration. Particle Swarm Optimization (PSO) Algorithm step-by-step explanation with Numerical Example and source code implementation. - PART 2 [Example 2] 1.) Initialize Population [Current Iteration (t) = 0] Population Size = 4; 𝑥𝑖 : (i = 1,2,3,4) and (t = 0) 𝑥1 =1.3; 𝑥2=4.3; 𝑥3=0.4; 𝑥4=−1.2 2.) Fitness Function u...

Firefly Optimization Algorithm

Image
Firefly algorithm is a swarm-based metaheuristic algorithm that was introduced by Yang. Firefly Algorithm is inspired by the FLASHING Behavior of Fireflies.  Assumptions Fireflies are attracted to each other. Attractiveness is proportional to BRIGHTNESS.  Less Brighter Firefly is attracted to the Brighter Firefly. Attractiveness decrease as the distance between 2 fireflies increase. If brightness for both is the same, fireflies move randomly. New Solutions are generated by Random walks & the Attraction of fireflies. Video Link:  https://youtu.be/QvpEMR-Jp0U Firefly Optimization Algorithm Steps Initialize Parameters. Generate Population of n Fireflies. Calculate Fitness Value for Each Firefly. Check stopping criteria if (CurrentIteration := 1 to MaximumIteration ).  Update Position and Light Intensity for Each Firefly. Report the Best Solution. Initialize Parameters, Population of Fire Fly Swarm. Population Size (n) = 20; Maximum Iteration (Maxt) = 50; Dimension ...
More posts