Posts

Showing posts from August 8, 2023

New Post

Confusion Matrix with Real-Life Examples || Artificial Intelligence || ~...

Image
Learn about the Confusion Matrix with Real-Life Examples. A confusion matrix is a table that shows how well an AI model makes predictions. It compares the actual results with the predicted ones and tells which are right or wrong. It includes True Positive (TP), False Positive (FP), False Negative (FN), and True Negative (TN). Video Chapters: Confusion Matrix in Artificial Intelligence 00:00 Introduction 00:12 Confusion Matrix 03:48 Metrices Derived from Confusion Matrix 04:26 Confusion Matrix Example 1 05:44 Confusion Matrix Example 2 08:10 Confusion Matrix Real-Life Uses #artificialintelligence #machinelearning #confusionmatrix #algorithm #optimization #research #happylearning #algorithms #meta #optimizationtechniques #swarmintelligence #swarm #artificialintelligence #machinelearning

GWO Python Code || Grey Wolf Optimizer in Python || ~xRay Pixy

Image
SOURCE CODE import numpy as np import tkinter as tk import matplotlib.pyplot as plt from tkinter import messagebox def initialization (PopSize,D,LB,UB):     SS_Boundary = len(LB) if isinstance(UB,(list,np.ndarray)) else 1     if SS_Boundary ==1:         Positions = np.random.rand(PopSize,D)*(UB-LB)+LB     else:         Positions = np.zeros((PopSize,D))         for i in range(D):             Positions[:,i]=np.random.rand(PopSize)*(UB[i]-LB[i])+LB[i]     return Positions def GWO(PopSize,MaxT,LB,UB,D,Fobj):     Alpha_Pos = np.zeros(D)     Alpha_Fit = np.inf     Beta_Pos = np.zeros(D)     Beta_Fit = np.inf     Delta_Pos = np.zeros(D)     Delta_Fit = np.inf     Positions = initialization(PopSize,D,UB,LB)     Convergence_curve = np.zeros(MaxT)     l = 0     while l...
More posts