Learn different algorithms used in Space Missions. Video Link Video Chapters: Algorithms Behind Space Missions 00:00 Introduction 00:52 Space Missions 04:26 Space Missions Challenges 07:04 Algorithms Used in Space Missions 10:36 Optimization Techniques 11:44 Conclusion NASA conducts space missions to explore the universe for various scientific, technological, and practical reasons: Understanding Our Place in the Universe Search for Life Beyond Earth Studying Earth from Space Advancing Technology Supporting Human Exploration Resource Utilization Inspiring Humanity Examples of NASA Space Missions Apollo Program: Sent humans to the Moon (1969–1972). Mars Rovers (Spirit, Opportunity, Perseverance): Explored Mars' surface and geology. Voyager Missions: Studied the outer planets and interstellar space. Hubble Space Telescope: Captured breathtaking images of the universe. International Space Station (ISS): Supports research in microgravity and international collaboration. Different ...
Get link
Facebook
X
Pinterest
Email
Other Apps
Artificial Bee Colony Optimization Algorithm Step-by-Step with Numerical...
Get link
Facebook
X
Pinterest
Email
Other Apps
-
Artificial Bee Colony Optimization Algorithm is a Swarm Intelligence Population-Based Metaheuristic Bees are flying insects with wings. Algorithm. Artificial Bee Colony Optimization Algorithm is inspired by the behavior of bees in nature. We can use an Algorithm. Artificial Bee Colony Optimization Algorithm to solve different Engineering Optimization Problems, Numerical Problems. Bees feed on nectar as Energy Source in their life.
Algorithms Inspired by the behavior of the bees:
Bees Algorithms
Bee Hives
Bee Colony Optimization Algorithm
Artificial Bee Colony (ABC) Algorithm
Marriage Bee Optimization (MBO) Algorithm
Bee Algorithms are used to solve different problems.
Artificial Bee Colony (ABC) Optimization Algorithm is inspired by Bee’s behavior in Nature. Artificial Bee Colony (ABC) is a Meta-heuristic algorithm based on the intelligent search behavior of Honey Bee Colony. ABC optimization algorithm is combined with both local and global search. Artificial Bee Colony (ABC) optimization algorithm is used to solve different engineering problems.
In ABC, Bee’s / Agents search for rich artificial food sources [Good Solution]. Artificial Bee Colony (ABC) optimization algorithm provides better results as compare to the Particle Swarm Optimization algorithm (PSO).
Artificial Bee Colony Optimization Step-by-Step with Numerical Example.
Artificial Bee Colony Optimization Steps
Step 01: Generate initial population randomly (𝑋_𝑖), i = 1,2,3,4,….Population Size
Step 02: Calculate fitness values for each agent in the population.
Step 03: Memorize the best (𝑋_𝐵𝑒𝑠𝑡) solution in the population.
Step 04: Set Current Iteration (t = 1)
Step 05: Generate new solutions for employee bee (𝑣_𝑖) from old solutions 〖(𝑋〗_𝑖).
Step 06: Compute the fitness of all new solutions in the population.
Step 07: Keep the best solution between current and candidate solutions.
Step 08: Calculate the Probability (𝑃_𝑖) for the solution 〖(𝑋〗_𝑖).
Step 09: Generate new solutions (𝑣_𝑖) for onlooker bees from the solution selecting depending on its 𝑃_𝑖.
Step 10: Calculate the fitness of all new solutions in the population.
Step 11: Determined the abandoned solution if exist, replace it with a new random solution 𝑋_𝑖.
Step 12: Keep the best solution found in the population.
Step 13: t = t+1;
Step 14: Repeat until t<=MaxT.
PARTICLE SWARM OPTIMIZATION ALGORITHM NUMERICAL EXAMPLE PSO is a computational method that Optimizes a problem. It is a Population-based stochastic search algorithm. PSO is inspired by the Social Behavior of Birds flocking. n Particle Swarm Optimization the solution of the problem is represented using Particles. [Flocking birds are replaced with particles for algorithm simplicity]. Objective Function is used for the performance evaluation for each particle / agent in the current population. PSO solved problems by having a Population (called Swarms) of Candidate Solutions (Particles). Local and global optimal solutions are used to update particle position in each iteration. Particle Swarm Optimization (PSO) Algorithm step-by-step explanation with Numerical Example and source code implementation. - PART 2 [Example 2] 1.) Initialize Population [Current Iteration (t) = 0] Population Size = 4; 𝑥𝑖 : (i = 1,2,3,4) and (t = 0) 𝑥1 =1.3; 𝑥2=4.3; 𝑥3=0.4; 𝑥4=−1.2 2.) Fitness Function u...
Cuckoo Search Algorithm - Metaheuristic Optimization Algorithm What is Cuckoo Search Algorithm? Cuckoo Search Algorithm is a Meta-Heuristic Algorithm. Cuckoo Search Algorithm is inspired by some Cuckoo species laying their eggs in the nest of other species of birds. In this algorithm, we have 2 bird Species. 1.) Cuckoo birds 2.) Host Birds (Other Species) What if Host Bird discovered cuckoo eggs? Cuckoo eggs can be found by Host Bird. Host bird discovers cuckoos egg with Probability of discovery of alien eggs. If Host Bird Discovered Cuckoo Bird Eggs. The host bird can throw the egg away. Abandon the nest and build a completely new nest. Mathematically, Each egg represent a solution and it is stored in the host bird nest. In this algorithm Artificial Cuckoo Birds are used. Artificial Cuckoo can lay one egg at a time. We will replace New and better solutions with less fit solutions. It means eggs that are more similar to host bird has opportunity to de...
Particle Swarm Optimization (PSO) is a p opulation-based stochastic search algorithm. PSO is inspired by the Social Behavior of Birds flocking. PSO is a computational method that Optimizes a problem. PSO searches for Optima by updating generations. It is popular is an intelligent metaheuristic algorithm. In Particle Swarm Optimization the solution of the problem is represented using Particles. [Flocking birds are replaced with particles for algorithm simplicity]. Objective Function is used for the performance evaluation for each particle / agent in the current population. After a number of iterations agents / particles will find out optimal solution in the search space. Q. What is PSO? A. PSO is a computational method that Optimizes a problem. Q. How PSO will optimize? A. By Improving a Candidate Solution. Q. How PSO Solve Problems? A. PSO solved problems by having a Population (called Swarms) of Candidate Solutions (Particles). Local and global optimal solutions are used to ...
Particle swarm optimization (PSO) What is meant by PSO? PSO is a computational method that Optimizes a problem. It is a Population-based stochastic search algorithm. PSO is inspired by the Social Behavior of Birds flocking. n Particle Swarm Optimization the solution of the problem is represented using Particles. [Flocking birds are replaced with particles for algorithm simplicity]. Objective Function is used for the performance evaluation for each particle / agent in the current population. PSO solved problems by having a Population (called Swarms) of Candidate Solutions (Particles). Local and global optimal solutions are used to update particle position in each iteration. How PSO will optimize? By Improving a Candidate Solution. How PSO Solve Problems? PSO solved problems by having a Population (called Swarms) of Candidate Solutions (Particles). The population of Candidate Solutions (i.e., Particles). What is Search Space in PSO? It is the range in which the algorithm computes th...
Local Binary Pattern Introduction to Local Binary Pattern (LBP) Q. What is Digital Image? A. Digital images are collections of pixels or numbers ( range from 0 to 255). Q. What is Pixel? A. Pixel is the smallest element of any digital image. Pixel can be categorized as Dark Pixel and Bright Pixel. Dark pixels contain low pixel values and bright pixels contain high pixel values. Q. Explain Local Binary Pattern (LBP)? A. Local binary pattern is a popular technique used for image processing. We can use the local binary pattern for face detection and face recognition. Q. What is LBP Operator? A. LBP operator is an image operator. We can transform images into arrays using the LBP operator. Q. How LBP values are computed? A. LBP works in 3x3 (it contain a 9-pixel value ). Local binary pattern looks at nine pixels at a time. Using each 3x3 window in the digital image, we can extract an LBP code. Q. How to Obtain LBP operator value? A. LBP operator values can be obtained by ...
Grey Wolf Optimization Algorithm (GWO) Grey Wolf Optimization Grey Wolf Optimization Algorithm is a metaheuristic proposed by Mirjaliali Mohammad and Lewis, 2014. Grey Wolf Optimizer is inspired by the social hierarchy and the hunting technique of Grey Wolves. What is Metaheuristic? Metaheuristic means a High-level problem-independent algorithmic framework (develop optimization algorithms). Metaheuristic algorithms find the best solution out of all possible solutions of optimization. Who are the Grey Wolves? Wolf (Animal): Wolf Lived in a highly organized pack. Also known as Gray wolf or Grey Wolf, is a large canine. Wolf Speed is 50-60 km/h. Their Lifespan is 6-8 years (in the wild). Scientific Name: Canis Lupus. Family: Canidae (Biological family of dog-like carnivorans). Grey Wolves lived in a highly organized pack. The average pack size ranges from 5-12. 4 different ranks of wolves in a pack: Alpha Wolf, Beta Wolf, Delta Wolf, and Omega Wolf. How Grey Wolf Optimiza...
There are about 1000 species of Bats. Bat Algorithm is based on the echolocation behavior of Micro Bats with varying pulse rates of emission and loudness. All bats use echolocation to sense distance and background barriers. Microbats are small to medium-sized flying mammals. Micro Bats used a Sonar that is known as Echolocation to detect their prey. Bats fly randomly with the velocity at the position with a fixed frequency and loudness for prey. Q. Whats is Frequency? A. Frequency is the number of waves that pass a fixed point in unit time. Wavelength is the minimum distance between two nearest particles which are in the same phase. Here, Sound waves are used by microbats to detect prey. Q. What is Position? A. A place where something or someone is located. Q. What is Velocity? A. Speed of something in a given direction. Q. What is loudness. A. Loudness refers to how soft or loud sound seems to listeners. Q. What is pulse rate? ...
Grey Wolf Optimization Algorithm Numerical Example Grey Wolf Optimization Algorithm Steps 1.) Initialize Grey Wolf Population. 2.) Initialize a, A, and C. 3.) Calculate the fitness of each search agent. 4.) 𝑿_𝜶 = best search agent 5.) 𝑿_𝜷 = second-best search agent 6.) 𝑿_𝜹 = third best search agent. 7.) while (t<Max number of iteration) 8.) For each search agent update the position of the current search agent by the above equations end for 9.) update a, A, and C 10.) Calculate the fitness of all search agents. 11.) update 𝑿_𝜶, 𝑿_𝜷, 𝑿_𝜹 12.) t = t+1 end while 13.) return 𝑿_𝜶 Grey Wolf Optimization Algorithm Numerical Example STEP 1. Initialize the Grey wolf Population [Initial Position for each Search Agent] 𝒙_(𝒊 ) (i = 1,2,3,…n) n = 6 // Number of Search Agents [ -100, 100] // Range Initial Wolf Position 3.2228 4.1553 -3.8197 4.2330 ...
Whale Optimization Algorithm Code Implementation Whale Optimization Algorithm Code Files function obj_fun(test_fun) switch test_fun case 'F1' x = -100:2:100; y=x; case 'F2' x = -10:2:10; y=x; end end function [LB,UB,D,FitFun]=test_fun_info(C) switch C case 'F1' FitFun = @F1; LB = -100; UB = 100; D = 30; case 'F2' FitFun = @F2; LB = -10; UB = 10; D = 30; end % F1 Test Function function r = F1(x) r = sum(x.^2); end % F2 Test Function function r = F2(x) r = sum(abs(x))+prod(abs(x)); end end function Position = initialize(Pop_Size,D,UB,LB) SS_Bo...
Comments
Post a Comment