New Post

Python Code || Path Planning with Grey Wolf Optimization (GWO) ~xRay Pixy

Image
Learn how to implement an obstacle-avoiding path planning for a robot using the Grey Wolf Optimization (GWO) in a static environment. #optimization #algorithm #metaheuristic #robotics #deeplearning #ArtificialIntelligence #MachineLearning #computervision #research #projects #thesis #Python

Grey Wolf Optimization Algorithm Numerical Example

 Grey Wolf Optimization Algorithm Numerical Example

Grey Wolf Optimization Algorithm Steps

1.) Initialize Grey Wolf Population.

2.) Initialize a, A, and C.

3.) Calculate the fitness of each search agent.

4.) 𝑿_𝜶 = best search agent

5.) 𝑿_𝜷 = second-best search agent

6.) 𝑿_𝜹 = third best search agent.

7.) while (t<Max number of iteration)

8.) For each search agent 

     update the position of the current search agent by the above equations

end for

9.) update a, A, and C

10.) Calculate the fitness of all search agents.

11.) update 𝑿_𝜶, 𝑿_𝜷, 𝑿_𝜹

12.) t = t+1

end while

13.) return 𝑿_𝜶

Grey Wolf Optimization Algorithm Numerical Example

STEP 1.  Initialize the Grey wolf Population [Initial Position for each Search Agent] 𝒙_(𝒊  )  (i = 1,2,3,…n) 

  n = 6 // Number of Search Agents

 [ -100, 100] // Range

Initial Wolf Position 

    3.2228

    4.1553

   -3.8197

    4.2330

    1.3554

   -4.1212

STEP 2. Calculate Fitness for Each Search Agent. 

  Objective Function: F6(x)  = sum(abs((𝒙_𝒊  + 0.5)).^2);

Initial Fitness Value

13.8592

21.6718

11.0204

22.4013

3.4425

13.1131  

STEP 3. Compare the gray wolves fitness value, and determine the current first three best wolves.

  Select: 𝑿_𝑨𝒍𝒑𝒉𝒂,𝑿_𝑩𝒆𝒕𝒂, 𝑿_𝑫𝒆𝒍𝒕𝒂

X(Alpha) = 3.4425

X(Beta) = 11.0204

X(Delta) = 13.1131

STEP 4. Check  ( t < Maxt )

  t = 0

0 < 50 [True]

STEP 5. Update position of Current search agent

a = 2- t*((2)/Maxt);                  [where a is decreases linearly from 2 to 0]

A1= 2*a*r1-a;

C1= 2*r2;

(𝐷_𝛼lpha ) =|𝐶_1. (𝑋_𝛼lpha )  − 𝑋 (𝑡)|  

(𝑋_1 ) =| (𝑋_𝛼lpha )  − 𝐴_1  .(𝐷_𝛼lpha )  |

X1= AlphaPosition  - A1 * Dalpha;

(𝐷_𝛼lpha )  =  0.6154

𝑋_1 =  0.6361

(𝐷_𝛽eta )   = 1.8659

𝑋_2 =  5.9968

(𝐷_Delta )   =  1.6909

𝑋_3 = -3.7867

𝑋_1 = 0.6361

𝑋_2 = 5.9968        

𝑋_3 = -3.7867

Updated position for Current Search Agent.

𝑿  (𝒕+𝟏) = ((𝑋_1 ) + (𝑋_2 ) + (𝑋_3 ) )/3

𝑿 (𝟎+𝟏) = ((0.6361+5.9968−3.7867))/3

𝑿 (𝟏) = 3.4732

𝑋_1 = 0.6361        NewFitness = 1.2910                     //AlphaScore

𝑋_2 = 5.9968        NewFitness = 5.5976                     //BetaScore

𝑋_3 = -3.7867       NewFitness =  10.8023                  //DeltaScore

STEP 6. Update Alpha, Beta and Delta Position. 

  Compare the Fitness Value and Wolf Score. 

If ( AlphaOldFitnessValue > AlphaNewFitness )

THEN 

          Update Alpha: Replace AlphaOldPosition with AlphaNewPosition and          AlphaNewFitnessValue; 

Else

       Use Old Position and Fitness Value. 

 Compare the Fitness Value and Wolf Score. 

1.) UPDATE Alpha

If ( AlphaOldFitnessValue > AlphaNewFitness )

If ( 3.4425 > 1.2910 )

THEN 

          Update Alpha: Replace AlphaOldPosition with AlphaNewPosition and          AlphaNewFitnessValue; 

2.) UPDATE Beta Wolf

If ( BetaOldFitnessValue > BetaNewFitness )

If ( 11.0204 > 5.5976 )

THEN 

  Update Alpha: Replace BetaOldPosition with BetaNewPosition and  BetaNewFitnessValue; 

3.) UPDATE Delta Wolf

If ( DeltaOldFitnessValue > DeltaNewFitness )

If ( 13.1131 > 10.8023 )

THEN 

 Update Alpha: Replace DeltaOldPosition with DeltaNewPosition and DeltaNewFitnessValue; 

REPEAT LOOP until stopping criteria met.

STEP 5. Update Alpha, Beta, and Delta Position

REPEAT LOOP 

Estimate the position of Prey by Alpha, Beta and Delta

Grade the Wolf: Best Solution is Alpha.

REPEAT LOOP until Condition Met.

a = 2-t*((2)/Maxt);                  % a decreases linearly from 2 to 0

A1= 2*a*r1-a;

C1= 2*r2;

(𝐷_𝛼lpha ) =  2.2059

𝑋_1 =  0.3045

(𝐷_𝛽eta )   = 6.9456

𝑋_2 =  -2.6423

(𝐷_Delta )   =  4.5037

𝑋_3 = 2.4711

𝑋_1 = 0.3045

𝑋_2 = -2.6423        

𝑋_3 = 2.4711

Updated position for Current Search Agent.

𝑿 ⃗  (𝒕+𝟏) = ((𝑋_1 ) ⃗+ (𝑋_2 ) ⃗+ (𝑋_3 ) ⃗)/3

𝑿 ⃗  (𝟏+𝟏) = ((0.3045−2.623+2.4711))/3

𝑿 ⃗  (𝟐) = 0.1526

Calculate Fitness for Update position of Current search agent

𝑋_1 = 0.3045        NewFitness = 0.6473                     //AlphaScore

𝑋_2 = -2.6423        NewFitness = 4.5895                     //BetaScore

𝑋_3 = 2.4711          NewFitness =  8.8276                  //DeltaScore

STEP 7.Return 𝑋_𝐴𝑙𝑝ℎ𝑎 

𝑋_𝐴𝑙𝑝ℎ𝑎 = 0.3045        AlphaFitnessValue = 0.6473

Software Testing using Metaheuristic Optimization

Test Suite Prioritization Problem Solved using Grey Wolf Optimization Algorithm.


Topics Covered in this Video:

INTRODUCTION TO SOFTWARE ENGINEERING
SOFTWARE DEVELOPMENT LIFE CYCLE
SOFTWARE TESTING
SOFTWARE TESTING OBJECTIVE
SOFTWARE TESTING LEVELS
SOFTWARE TESTING TOOLS
SOFTWARE TESTING USING METAHEURISTIC OPTIMIZATION ALGORITHMS
TEST SUITE PRIORITIZATION PROBLEM
TEST SUITE PRIORITIZATION USING OPTIMIZATION ALGORITHMS
SOFTWARE TESTING CHALLANGES
SOFTWARE TESTING DESIGN STTATIES
SEARCH BASED SOFTWARE TESTING
WHITE BOX TESTING
BLACK BOX TESTING
TEST SUITE DESIGN EXAMPLE
TEST SUITE
TEST SUITE PRIORITIZATION
#Metaheuristic #Algorithms
Meta-heuristic Algorithms

Link - Click Here

Comments

Popular Post

PARTICLE SWARM OPTIMIZATION ALGORITHM NUMERICAL EXAMPLE

Cuckoo Search Algorithm for Optimization Problems

Particle Swarm Optimization (PSO)

PSO (Particle Swarm Optimization) Example Step-by-Step

how is the LBP |Local Binary Pattern| values calculated? Step-by-Step with Example

PSO Python Code || Particle Swarm Optimization in Python || ~xRay Pixy

Bat algorithm Explanation Step by Step with example

Grey Wolf Optimization Algorithm

Whale Optimization Algorithm Code Implementation || WOA CODE || ~xRay Pixy