New Post

Poplar Optimization Algorithm || Step-By-Step || ~xRay Pixy

Image
The Poplar Optimization Algorithm (POA) is a nature-inspired optimization method based on how poplar trees reproduce. It uses sexual propagation (seed dispersal by wind) for exploration and asexual reproduction (cutting and regrowth) for exploitation. Mutation and chaos factors help maintain diversity and prevent premature convergence, making POA efficient for solving complex optimization problems. Learn the Poplar Optimization Algorithm Step-By-Step using Examples. Video Chapters: Poplar Optimization Algorithm (POA) 00:00 Introduction 02:12 POA Applications 03:32 POA Steps 05:50 Execute Algorithm 1 13:45 Execute Algorithm 2 16:38 Execute Algorithm 3 18:15 Conclusion Main Points of the Poplar Optimization Algorithm (POA) Nature-Inspired Algorithm ā€“ Based on the reproductive mechanisms of poplar trees. Two Key Processes : Sexual Propagation (Seed Dispersal) ā€“ Uses wind to spread seeds, allowing broad exploration. Asexual Reproduction (Cuttings) ā€“ Strong branches grow ...

Grey Wolf Optimization Algorithm Numerical Example

 Grey Wolf Optimization Algorithm Numerical Example

Grey Wolf Optimization Algorithm Steps

1.) Initialize Grey Wolf Population.

2.) Initialize a, A, and C.

3.) Calculate the fitness of each search agent.

4.) š‘æ_šœ¶ = best search agent

5.) š‘æ_šœ· = second-best search agent

6.) š‘æ_šœ¹ = third best search agent.

7.) while (t<Max number of iteration)

8.) For each search agent 

     update the position of the current search agent by the above equations

end for

9.) update a, A, and C

10.) Calculate the fitness of all search agents.

11.) update š‘æ_šœ¶, š‘æ_šœ·, š‘æ_šœ¹

12.) t = t+1

end while

13.) return š‘æ_šœ¶

Grey Wolf Optimization Algorithm Numerical Example

STEP 1.  Initialize the Grey wolf Population [Initial Position for each Search Agent] š’™_(š’Š  )  (i = 1,2,3,ā€¦n) 

  n = 6 // Number of Search Agents

 [ -100, 100] // Range

Initial Wolf Position 

    3.2228

    4.1553

   -3.8197

    4.2330

    1.3554

   -4.1212

STEP 2. Calculate Fitness for Each Search Agent. 

  Objective Function: F6(x)  = sum(abs((š’™_š’Š  + 0.5)).^2);

Initial Fitness Value

13.8592

21.6718

11.0204

22.4013

3.4425

13.1131  

STEP 3. Compare the gray wolves fitness value, and determine the current first three best wolves.

  Select: š‘æ_š‘Øš’š’‘š’‰š’‚,š‘æ_š‘©š’†š’•š’‚, š‘æ_š‘«š’†š’š’•š’‚

X(Alpha) = 3.4425

X(Beta) = 11.0204

X(Delta) = 13.1131

STEP 4. Check  ( t < Maxt )

  t = 0

0 < 50 [True]

STEP 5. Update position of Current search agent

a = 2- t*((2)/Maxt);                  [where a is decreases linearly from 2 to 0]

A1= 2*a*r1-a;

C1= 2*r2;

(š·_š›¼lpha ) =|š¶_1. (š‘‹_š›¼lpha )  āˆ’ š‘‹ (š‘”)|  

(š‘‹_1 ) =| (š‘‹_š›¼lpha )  āˆ’ š“_1  .(š·_š›¼lpha )  |

X1= AlphaPosition  - A1 * Dalpha;

(š·_š›¼lpha )  =  0.6154

š‘‹_1 =  0.6361

(š·_š›½eta )   = 1.8659

š‘‹_2 =  5.9968

(š·_Delta )   =  1.6909

š‘‹_3 = -3.7867

š‘‹_1 = 0.6361

š‘‹_2 = 5.9968        

š‘‹_3 = -3.7867

Updated position for Current Search Agent.

š‘æ  (š’•+šŸ) = ((š‘‹_1 ) + (š‘‹_2 ) + (š‘‹_3 ) )/3

š‘æ (šŸŽ+šŸ) = ((0.6361+5.9968āˆ’3.7867))/3

š‘æ (šŸ) = 3.4732

š‘‹_1 = 0.6361        NewFitness = 1.2910                     //AlphaScore

š‘‹_2 = 5.9968        NewFitness = 5.5976                     //BetaScore

š‘‹_3 = -3.7867       NewFitness =  10.8023                  //DeltaScore

STEP 6. Update Alpha, Beta and Delta Position. 

  Compare the Fitness Value and Wolf Score. 

If ( AlphaOldFitnessValue > AlphaNewFitness )

THEN 

          Update Alpha: Replace AlphaOldPosition with AlphaNewPosition and          AlphaNewFitnessValue; 

Else

       Use Old Position and Fitness Value. 

 Compare the Fitness Value and Wolf Score. 

1.) UPDATE Alpha

If ( AlphaOldFitnessValue > AlphaNewFitness )

If ( 3.4425 > 1.2910 )

THEN 

          Update Alpha: Replace AlphaOldPosition with AlphaNewPosition and          AlphaNewFitnessValue; 

2.) UPDATE Beta Wolf

If ( BetaOldFitnessValue > BetaNewFitness )

If ( 11.0204 > 5.5976 )

THEN 

  Update Alpha: Replace BetaOldPosition with BetaNewPosition and  BetaNewFitnessValue; 

3.) UPDATE Delta Wolf

If ( DeltaOldFitnessValue > DeltaNewFitness )

If ( 13.1131 > 10.8023 )

THEN 

 Update Alpha: Replace DeltaOldPosition with DeltaNewPosition and DeltaNewFitnessValue; 

REPEAT LOOP until stopping criteria met.

STEP 5. Update Alpha, Beta, and Delta Position

REPEAT LOOP 

Estimate the position of Prey by Alpha, Beta and Delta

Grade the Wolf: Best Solution is Alpha.

REPEAT LOOP until Condition Met.

a = 2-t*((2)/Maxt);                  % a decreases linearly from 2 to 0

A1= 2*a*r1-a;

C1= 2*r2;

(š·_š›¼lpha ) =  2.2059

š‘‹_1 =  0.3045

(š·_š›½eta )   = 6.9456

š‘‹_2 =  -2.6423

(š·_Delta )   =  4.5037

š‘‹_3 = 2.4711

š‘‹_1 = 0.3045

š‘‹_2 = -2.6423        

š‘‹_3 = 2.4711

Updated position for Current Search Agent.

š‘æ āƒ—  (š’•+šŸ) = ((š‘‹_1 ) āƒ—+ (š‘‹_2 ) āƒ—+ (š‘‹_3 ) āƒ—)/3

š‘æ āƒ—  (šŸ+šŸ) = ((0.3045āˆ’2.623+2.4711))/3

š‘æ āƒ—  (šŸ) = 0.1526

Calculate Fitness for Update position of Current search agent

š‘‹_1 = 0.3045        NewFitness = 0.6473                     //AlphaScore

š‘‹_2 = -2.6423        NewFitness = 4.5895                     //BetaScore

š‘‹_3 = 2.4711          NewFitness =  8.8276                  //DeltaScore

STEP 7.Return š‘‹_š“š‘™š‘ā„Žš‘Ž 

š‘‹_š“š‘™š‘ā„Žš‘Ž = 0.3045        AlphaFitnessValue = 0.6473

Software Testing using Metaheuristic Optimization

Test Suite Prioritization Problem Solved using Grey Wolf Optimization Algorithm.


Topics Covered in this Video:

INTRODUCTION TO SOFTWARE ENGINEERING
SOFTWARE DEVELOPMENT LIFE CYCLE
SOFTWARE TESTING
SOFTWARE TESTING OBJECTIVE
SOFTWARE TESTING LEVELS
SOFTWARE TESTING TOOLS
SOFTWARE TESTING USING METAHEURISTIC OPTIMIZATION ALGORITHMS
TEST SUITE PRIORITIZATION PROBLEM
TEST SUITE PRIORITIZATION USING OPTIMIZATION ALGORITHMS
SOFTWARE TESTING CHALLANGES
SOFTWARE TESTING DESIGN STTATIES
SEARCH BASED SOFTWARE TESTING
WHITE BOX TESTING
BLACK BOX TESTING
TEST SUITE DESIGN EXAMPLE
TEST SUITE
TEST SUITE PRIORITIZATION
#Metaheuristic #Algorithms
Meta-heuristic Algorithms

Link - Click Here

Comments

Popular Post

PARTICLE SWARM OPTIMIZATION ALGORITHM NUMERICAL EXAMPLE

Cuckoo Search Algorithm for Optimization Problems

Particle Swarm Optimization (PSO)

PSO (Particle Swarm Optimization) Example Step-by-Step

PSO Python Code || Particle Swarm Optimization in Python || ~xRay Pixy

how is the LBP |Local Binary Pattern| values calculated? Step-by-Step with Example

Whale Optimization Algorithm Code Implementation || WOA CODE || ~xRay Pixy

Grey Wolf Optimization Algorithm

Bat algorithm Explanation Step by Step with example