New Post

AI and Deep Learning for Ear Infection Detection ~xRay Pixy

Image
Learn how AI and deep learning revolutionize ear infection detection, enabling accurate, fast, and automated diagnosis using advanced image processing and machine learning techniques. Video Chapters: Ear Infection Detection using AI and DL 00:00 Introduction 00:14 My Experience with Ear Infections 01:15 Topics Covered 02:24 Ear Infections 02:48 Ear Infection Signs 03:55 Ear Infection Preventions 04:29 Ear Infection Types 05:19 Ear Infection Causes 06:14 How Bacteria and Fungus Grow in Ear 07:26 My Mistakes 08:49 Doctors Advise after Ear Infection 09:45 Ear Infection Common Symptoms 10:37 Automated Ear Infection Detection with Deep Learning AI 15:09 Smartphone Otoscopes 16:04 Conclusion Ear fungus, also known as otomycosis , is a fungal infection of the outer ear canal. If an ear infection is not treated on time, it can lead to serious complications.  Hearing Loss – Persistent infections can damage the eardrum and middle ear structures, leading to partial or permanent hearing loss....

Remora Optimization Algorithm Step-by-Step Learning with Example ~xRay Pixy

Remora Optimization Algorithm (ROA)


Remora Optimization Algorithm (ROA) is recently proposed Bionics based, Nature Inspired Metaheuristic Optimization Algorithm used to solve Global Optimization Problems. Remora Optimization Algorithm is proposed by Heming Jia, Xiaoxu Peng and Chunbo Lang in 2021. Remora Optimization Algorithm is basically inspired by the Parasitic features of remora and Random Host Replacement of remora. Remora use suction technique for their survival. They attached themselves to the host animals such as Whales, Sea Turtles, Sharks, Swordfish and other. They use their suction disk to easily attach themselves with host.

Remora clean host body from Parasites, Bacteria's, and in return they get their food for survival. They also eat the leftover food from their host. In ROA, Whale Optimization Algorithm and Swordfish Optimization Algorithm is used to update remora position in the search space. In ROA, the fusion framework is used by switching between Remora and two host (Whale, Swordfish). Remora follow 2 host Whale and Swordfish in this algorithm.
Remora Optimization Algorithm Advantages:
  • Solve Global Optimization Problems.
  • Better as compare to heuristic algorithms.
Remora Optimization Algorithm Limitations:
  • Slow Convergence Rate.
  • Poor Solution Accuracy.
  • For some engineering problems stuck in local optima.
Remora Optimization Algorithm Steps:
  • Initialize population for N remora.
  • Using fitness function evaluate performance for each remora.
  • Find out the best and worst remora in the current population.
  • Update algorithm parameters.
  • Update Remora Position
  • Again evaluate performance for updated remoras.
  • Compare solution and display best among all.
  • Find out the best and worst remora in the current population.
  • Update algorithm parameters.
  • Update Remora Position.
  • Again evaluate performance for updated remoras.
  • Compare solution and display best among all.


Meta-heuristic Algorithms   CLICK HERE...

Comments

Popular Post

PARTICLE SWARM OPTIMIZATION ALGORITHM NUMERICAL EXAMPLE

Cuckoo Search Algorithm for Optimization Problems

Particle Swarm Optimization (PSO)

PSO (Particle Swarm Optimization) Example Step-by-Step

how is the LBP |Local Binary Pattern| values calculated? Step-by-Step with Example

PSO Python Code || Particle Swarm Optimization in Python || ~xRay Pixy

Grey Wolf Optimization Algorithm

Grey Wolf Optimization Algorithm Numerical Example

Whale Optimization Algorithm Code Implementation || WOA CODE || ~xRay Pixy

Bat algorithm Explanation Step by Step with example