New Post

Life Skills for Everyday Success ~xRay Pixy

Image
Life skills are the basic abilities we need to handle daily challenges and live a healthy, balanced life. They help us think clearly, manage our feelings, make good decisions, solve problems, and build good relationships with others. The World Health Organization (WHO) highlights 10 important life skills: 1.) Thinking skills: decision-making, problem-solving, creative thinking, critical thinking 2.) Social skills: communication, empathy, interpersonal skills 3.) Emotional skills: self-awareness, coping with emotions, coping with stress Life skills are the tools that make us stronger, wiser, and calmer in real life — at home, in school, at work, and in the community :) Life Skills for Everyday Success ~xRay Pixy https://youtu.be/AMsUfKRl4kw Video Chapters: Life Skills 00:00 Introduction 01:07 Life Skills 09:42 Real Life Challenge 13:44 Task For You #LifeSkills #SuccessTools #StressFreeLiving #algorithm #optimization #research #happylearning #algorithms #meta #optimizationtechniques #swa...

PSO Python Code || Particle Swarm Optimization in Python || ~xRay Pixy


Particle Swarm Optimization Implementation in Python Video Chapters: 00:00 Introduction 02:01 Code 05:55 Position Initialization 08:06 PSO Main Loop 08:42 Velocity Calculation 10:02 Position Update 10:36 Fitness Evaluation 13:21 Objective Function 17:44 Result 19:00 Conclusion

.....................................................SOURCE CODE.........................................................................
import random import numpy as np from tkinter import messagebox #Define Class Particles class Particle: def __init__ (self,position): self.position=position self.velocity=np.zeros_like(position) self.best_position=position self.best_fitness=float('inf') def PSO(ObjF,Pop_Size,D,MaxT): swarm_best_position=None swarm_best_fitness=float('inf') particles=[] #Posotion Initialization position=np.random.uniform(-0.5,0.5,D) particle=Particle(position) particles.append(particle) #Fitness Update fitness=ObjF(position) if fitness<swarm_best_fitness: swarm_best_fitness=fitness swarm_best_position=position particle.best_position=position particle.best_fitness=fitness #PSO Main Loop for itr in range(MaxT): for particle in particles: #Update Velocity w = 0.8 c1 = 1.2 c2 = 1.2 r1=random.random() r2=random.random() #Velocity Calculation particle.velocity =(w*particle.velocity+c1*r1*(particle.best_position-particle.position)+c2*r2+(swarm_best_position-particle.position)) #New Position particle.position += particle.velocity #Evaluate Fitness fitness = ObjF(particle.position) #Update PBest if fitness<particle.best_fitness: particle.best_fitness=fitness particle.best_position=particle.position #Update GBest if fitness<swarm_best_fitness: swarm_best_fitness=fitness swarm_best_position=particle.position return swarm_best_position,swarm_best_fitness #Define ObjFunction def F1(x): return np.sum(x**2) def F2(x): return np.max(np.abs(x)) Objective_Function ={'F1':F1,'F2':F2} #Parameters Pop_Size=100 MaxT=100 D=2 # Iterate over each objective function and run PSO for funName, ObjF in Objective_Function.items(): Output = "Running Function = " + funName + "\n" best_position,best_fitness = PSO(ObjF,Pop_Size,D,MaxT) Output += "BEST POSITION : " + str(best_position)+"\n" Output += "BEST COST : " + str(best_fitness) Output += "\n" messagebox.showinfo("PSO RUN",Output)



Comments

Popular Post

PARTICLE SWARM OPTIMIZATION ALGORITHM NUMERICAL EXAMPLE

Cuckoo Search Algorithm for Optimization Problems

Particle Swarm Optimization (PSO)

PSO (Particle Swarm Optimization) Example Step-by-Step

how is the LBP |Local Binary Pattern| values calculated? Step-by-Step with Example

Grey Wolf Optimization Algorithm

Grey Wolf Optimization Algorithm Numerical Example

Bat algorithm Explanation Step by Step with example

Whale Optimization Algorithm Code Implementation || WOA CODE || ~xRay Pixy