New Post

Confusion Matrix with Real-Life Examples || Artificial Intelligence || ~...

Image
Learn about the Confusion Matrix with Real-Life Examples. A confusion matrix is a table that shows how well an AI model makes predictions. It compares the actual results with the predicted ones and tells which are right or wrong. It includes True Positive (TP), False Positive (FP), False Negative (FN), and True Negative (TN). Video Chapters: Confusion Matrix in Artificial Intelligence 00:00 Introduction 00:12 Confusion Matrix 03:48 Metrices Derived from Confusion Matrix 04:26 Confusion Matrix Example 1 05:44 Confusion Matrix Example 2 08:10 Confusion Matrix Real-Life Uses #artificialintelligence #machinelearning #confusionmatrix #algorithm #optimization #research #happylearning #algorithms #meta #optimizationtechniques #swarmintelligence #swarm #artificialintelligence #machinelearning

PSO Python Code || Particle Swarm Optimization in Python || ~xRay Pixy


Particle Swarm Optimization Implementation in Python Video Chapters: 00:00 Introduction 02:01 Code 05:55 Position Initialization 08:06 PSO Main Loop 08:42 Velocity Calculation 10:02 Position Update 10:36 Fitness Evaluation 13:21 Objective Function 17:44 Result 19:00 Conclusion

.....................................................SOURCE CODE.........................................................................
import random import numpy as np from tkinter import messagebox #Define Class Particles class Particle: def __init__ (self,position): self.position=position self.velocity=np.zeros_like(position) self.best_position=position self.best_fitness=float('inf') def PSO(ObjF,Pop_Size,D,MaxT): swarm_best_position=None swarm_best_fitness=float('inf') particles=[] #Posotion Initialization position=np.random.uniform(-0.5,0.5,D) particle=Particle(position) particles.append(particle) #Fitness Update fitness=ObjF(position) if fitness<swarm_best_fitness: swarm_best_fitness=fitness swarm_best_position=position particle.best_position=position particle.best_fitness=fitness #PSO Main Loop for itr in range(MaxT): for particle in particles: #Update Velocity w = 0.8 c1 = 1.2 c2 = 1.2 r1=random.random() r2=random.random() #Velocity Calculation particle.velocity =(w*particle.velocity+c1*r1*(particle.best_position-particle.position)+c2*r2+(swarm_best_position-particle.position)) #New Position particle.position += particle.velocity #Evaluate Fitness fitness = ObjF(particle.position) #Update PBest if fitness<particle.best_fitness: particle.best_fitness=fitness particle.best_position=particle.position #Update GBest if fitness<swarm_best_fitness: swarm_best_fitness=fitness swarm_best_position=particle.position return swarm_best_position,swarm_best_fitness #Define ObjFunction def F1(x): return np.sum(x**2) def F2(x): return np.max(np.abs(x)) Objective_Function ={'F1':F1,'F2':F2} #Parameters Pop_Size=100 MaxT=100 D=2 # Iterate over each objective function and run PSO for funName, ObjF in Objective_Function.items(): Output = "Running Function = " + funName + "\n" best_position,best_fitness = PSO(ObjF,Pop_Size,D,MaxT) Output += "BEST POSITION : " + str(best_position)+"\n" Output += "BEST COST : " + str(best_fitness) Output += "\n" messagebox.showinfo("PSO RUN",Output)



Comments

Popular Post

PARTICLE SWARM OPTIMIZATION ALGORITHM NUMERICAL EXAMPLE

Cuckoo Search Algorithm for Optimization Problems

PSO (Particle Swarm Optimization) Example Step-by-Step

Particle Swarm Optimization (PSO)

how is the LBP |Local Binary Pattern| values calculated? Step-by-Step with Example

Grey Wolf Optimization Algorithm

Bat algorithm Explanation Step by Step with example

Grey Wolf Optimization Algorithm Numerical Example

Whale Optimization Algorithm Code Implementation || WOA CODE || ~xRay Pixy