New Post

Python Code || Path Planning with Grey Wolf Optimization (GWO) ~xRay Pixy

Image
Learn how to implement an obstacle-avoiding path planning for a robot using the Grey Wolf Optimization (GWO) in a static environment. #optimization #algorithm #metaheuristic #robotics #deeplearning #ArtificialIntelligence #MachineLearning #computervision #research #projects #thesis #Python

PSO Python Code || Particle Swarm Optimization in Python || ~xRay Pixy


Particle Swarm Optimization Implementation in Python Video Chapters: 00:00 Introduction 02:01 Code 05:55 Position Initialization 08:06 PSO Main Loop 08:42 Velocity Calculation 10:02 Position Update 10:36 Fitness Evaluation 13:21 Objective Function 17:44 Result 19:00 Conclusion

.....................................................SOURCE CODE.........................................................................
import random import numpy as np from tkinter import messagebox #Define Class Particles class Particle: def __init__ (self,position): self.position=position self.velocity=np.zeros_like(position) self.best_position=position self.best_fitness=float('inf') def PSO(ObjF,Pop_Size,D,MaxT): swarm_best_position=None swarm_best_fitness=float('inf') particles=[] #Posotion Initialization position=np.random.uniform(-0.5,0.5,D) particle=Particle(position) particles.append(particle) #Fitness Update fitness=ObjF(position) if fitness<swarm_best_fitness: swarm_best_fitness=fitness swarm_best_position=position particle.best_position=position particle.best_fitness=fitness #PSO Main Loop for itr in range(MaxT): for particle in particles: #Update Velocity w = 0.8 c1 = 1.2 c2 = 1.2 r1=random.random() r2=random.random() #Velocity Calculation particle.velocity =(w*particle.velocity+c1*r1*(particle.best_position-particle.position)+c2*r2+(swarm_best_position-particle.position)) #New Position particle.position += particle.velocity #Evaluate Fitness fitness = ObjF(particle.position) #Update PBest if fitness<particle.best_fitness: particle.best_fitness=fitness particle.best_position=particle.position #Update GBest if fitness<swarm_best_fitness: swarm_best_fitness=fitness swarm_best_position=particle.position return swarm_best_position,swarm_best_fitness #Define ObjFunction def F1(x): return np.sum(x**2) def F2(x): return np.max(np.abs(x)) Objective_Function ={'F1':F1,'F2':F2} #Parameters Pop_Size=100 MaxT=100 D=2 # Iterate over each objective function and run PSO for funName, ObjF in Objective_Function.items(): Output = "Running Function = " + funName + "\n" best_position,best_fitness = PSO(ObjF,Pop_Size,D,MaxT) Output += "BEST POSITION : " + str(best_position)+"\n" Output += "BEST COST : " + str(best_fitness) Output += "\n" messagebox.showinfo("PSO RUN",Output)



Comments

Popular Post

PARTICLE SWARM OPTIMIZATION ALGORITHM NUMERICAL EXAMPLE

Cuckoo Search Algorithm for Optimization Problems

Particle Swarm Optimization (PSO)

PSO (Particle Swarm Optimization) Example Step-by-Step

how is the LBP |Local Binary Pattern| values calculated? Step-by-Step with Example

Bat algorithm Explanation Step by Step with example

Grey Wolf Optimization Algorithm

Grey Wolf Optimization Algorithm Numerical Example

Whale Optimization Algorithm Code Implementation || WOA CODE || ~xRay Pixy