Posts

Showing posts from June 18, 2021

New Post

Confusion Matrix with Real-Life Examples || Artificial Intelligence || ~...

Image
Learn about the Confusion Matrix with Real-Life Examples. A confusion matrix is a table that shows how well an AI model makes predictions. It compares the actual results with the predicted ones and tells which are right or wrong. It includes True Positive (TP), False Positive (FP), False Negative (FN), and True Negative (TN). Video Chapters: Confusion Matrix in Artificial Intelligence 00:00 Introduction 00:12 Confusion Matrix 03:48 Metrices Derived from Confusion Matrix 04:26 Confusion Matrix Example 1 05:44 Confusion Matrix Example 2 08:10 Confusion Matrix Real-Life Uses #artificialintelligence #machinelearning #confusionmatrix #algorithm #optimization #research #happylearning #algorithms #meta #optimizationtechniques #swarmintelligence #swarm #artificialintelligence #machinelearning

Whale Optimization Algorithm for Association Rule Mining.

Image
 Whale Optimization Algorithm for association rule mining. Input: Number of Maximum Iteration and Population Size, Minsupport, minconfedence.  Step 01: Initialize the population size for n search agents.[Xi(i=1,2,3,...n)] Step 02: Initialize i, A, C, L, and p. Step 03: Compute the fitness value of each search agent/whale. Step 04: X* = the best rule Step 05: While (CurrentIteration <= MaximumIteration ) Step 06: Update a, A, C, L and p. Step 07: For all whale poplation check          if (p<0.5) if(|A|<1)    For each Item in the solution Xi.    Update Items. Else if(|A|=1)     Select a random Item in Xi. Update Items. End if        For each item in the solution Xi. If the Item is odd, it belongs to the antecedent, Otherwise, it belongs to the consequence. End for Step 08: Calculate the fitness of each search agent. Step 09: Update X* if there is a better solution. Ste...
More posts