New Post

Avascular Necrosis (AVN) || Early Detection, Better Outcomes || ~xRay Pixy

Image
Avascular Necrosis (AVN) is a condition where blood flow to the bone is reduced, causing bone cells to die. This leads to pain, joint damage, and difficulty in movement, especially in the hip. Early diagnosis and proper treatment can prevent permanent bone damage and improve quality of life. Video Chapter: AVN 00:00 Introduction 00:45 What is AVN? 01:55 About Bone Tissue 02:49 AVN Causes 03:38 AVN Symptoms 04:11 AVN Diagnosis 04:56 AVN of femoral head 05:33 How AVN Develops 07:28 Conclusions #optimization #algorithm #metaheuristic #robotics #deeplearning #ArtificialIntelligence #MachineLearning #computervision #research #projects #thesis #Python #optimizationproblem #optimizationalgorithms 

Solved Constrained Engineering Optimization Problems using Metaheuristic...

Constrained Engineering Optimization Problems


In this video, we applied different Metaheuristic Optimization Algorithms on 3 different Constrained Engineering Design Optimization Problems E01, E02 and E03.
E01: Welded beam design problem. E02: Speed Reducer design optimization problem. E03: Tension/Compression spring design optimization problem.

All constrained engineering optimization problems have different Objective function, Decision variables and Constraints. We did not try to optimize SSA parameters, for each problem constraints are directly handled [it means IF Solution can not satisfy the constraints – we will consider it Infeasible Solution]. Three engineering problems are solved using Sparrow Search Algorithm (SSA). We also compared the results with respect to 3 Metaheuristic Algorithms: Particle Swarm Optimization Algorithm (PSO), Grey Wolf Optimization Algorithm (GWO) and Teaching Leaning Based Optimization Algorithm (TLBO).

When we compared SSA with other algorithms, the performance of SSA is better as compared to other. SSA algorithm obtained OPTIMAL value for each constrained engineering optimization problem in each run. That's why we considered SSA suitable for solving constrained optimization problem [because SSA is simple, Fast, reliable and provide accurate results].

Result Analysis: The result obtained by SSA is Compared with different metaheuristic optimization algorithms. We selected three constrained engineering design problems for the evaluation of SSA. For Swarm Size (6), we performed independent run for each problem. It means that we run the code only once and note down Best and Worst Values obtained in each run [for each algorithm SSA, PSO, GWO and TLBO].

Video Timestamps: Introduction: 00:00 Welded beam design optimization: 02:02 Speed Reducer design optimization problem: 03:27 Tension/compression spring design optimization problem: 03:52 Optimization Algorithms used: 04:22 Project Result Analysis and Comparison: 04:39 MATLAB Code: 10:13

Comments

Popular Post

PARTICLE SWARM OPTIMIZATION ALGORITHM NUMERICAL EXAMPLE

Cuckoo Search Algorithm for Optimization Problems

PSO (Particle Swarm Optimization) Example Step-by-Step

Particle Swarm Optimization (PSO)

PSO Python Code || Particle Swarm Optimization in Python || ~xRay Pixy

how is the LBP |Local Binary Pattern| values calculated? Step-by-Step with Example

Whale Optimization Algorithm Code Implementation || WOA CODE || ~xRay Pixy

Grey Wolf Optimization Algorithm

Grey Wolf Optimization Algorithm Numerical Example

GWO Python Code || Grey Wolf Optimizer in Python || ~xRay Pixy