Posts

Showing posts from August 7, 2021

New Post

AI and Deep Learning for Ear Infection Detection ~xRay Pixy

Image
Learn how AI and deep learning revolutionize ear infection detection, enabling accurate, fast, and automated diagnosis using advanced image processing and machine learning techniques. Video Chapters: Ear Infection Detection using AI and DL 00:00 Introduction 00:14 My Experience with Ear Infections 01:15 Topics Covered 02:24 Ear Infections 02:48 Ear Infection Signs 03:55 Ear Infection Preventions 04:29 Ear Infection Types 05:19 Ear Infection Causes 06:14 How Bacteria and Fungus Grow in Ear 07:26 My Mistakes 08:49 Doctors Advise after Ear Infection 09:45 Ear Infection Common Symptoms 10:37 Automated Ear Infection Detection with Deep Learning AI 15:09 Smartphone Otoscopes 16:04 Conclusion Ear fungus, also known as otomycosis , is a fungal infection of the outer ear canal. If an ear infection is not treated on time, it can lead to serious complications.  Hearing Loss – Persistent infections can damage the eardrum and middle ear structures, leading to partial or permanent hearing loss....

Grey Wolf Optimization Algorithm Numerical Example

Image
 Grey Wolf Optimization Algorithm Numerical Example Grey Wolf Optimization Algorithm Steps 1.) Initialize Grey Wolf Population. 2.) Initialize a, A, and C. 3.) Calculate the fitness of each search agent. 4.) 𝑿_𝜶 = best search agent 5.) 𝑿_𝜷 = second-best search agent 6.) 𝑿_𝜹 = third best search agent. 7.) while (t<Max number of iteration) 8.) For each search agent       update the position of the current search agent by the above equations end for 9.) update a, A, and C 10.) Calculate the fitness of all search agents. 11.) update 𝑿_𝜶, 𝑿_𝜷, 𝑿_𝜹 12.) t = t+1 end while 13.) return 𝑿_𝜶 Grey Wolf Optimization Algorithm Numerical Example STEP 1.  Initialize the Grey wolf Population [Initial Position for each Search Agent] 𝒙_(𝒊  )  (i = 1,2,3,…n)     n = 6 // Number of Search Agents  [ -100, 100] // Range Initial Wolf Position      3.2228     4.1553    -3.8197     4.2330  ...

Grey Wolf Optimization Algorithm

Image
 Grey Wolf Optimization Algorithm  (GWO) Grey Wolf Optimization Grey Wolf Optimization Algorithm is a metaheuristic proposed by Mirjaliali Mohammad and Lewis, 2014. Grey Wolf Optimizer is inspired by the social hierarchy and the hunting technique of Grey Wolves. What is Metaheuristic? Metaheuristic means a High-level problem-independent algorithmic framework (develop optimization algorithms). Metaheuristic algorithms find the best solution out of all possible solutions of optimization. Who are the Grey Wolves? Wolf (Animal): Wolf Lived in a highly organized pack. Also known as Gray wolf or Grey Wolf, is a large canine. Wolf Speed is 50-60 km/h. Their Lifespan is 6-8 years (in the wild). Scientific Name: Canis Lupus. Family: Canidae (Biological family of dog-like carnivorans). Grey Wolves lived in a highly organized pack. The average pack size ranges from 5-12.  4 different ranks of wolves in a pack: Alpha Wolf, Beta Wolf, Delta Wolf, and Omega Wolf. How Grey Wolf Optimiza...
More posts