Posts

Showing posts from November 5, 2022

New Post

Confusion Matrix with Real-Life Examples || Artificial Intelligence || ~...

Image
Learn about the Confusion Matrix with Real-Life Examples. A confusion matrix is a table that shows how well an AI model makes predictions. It compares the actual results with the predicted ones and tells which are right or wrong. It includes True Positive (TP), False Positive (FP), False Negative (FN), and True Negative (TN). Video Chapters: Confusion Matrix in Artificial Intelligence 00:00 Introduction 00:12 Confusion Matrix 03:48 Metrices Derived from Confusion Matrix 04:26 Confusion Matrix Example 1 05:44 Confusion Matrix Example 2 08:10 Confusion Matrix Real-Life Uses #artificialintelligence #machinelearning #confusionmatrix #algorithm #optimization #research #happylearning #algorithms #meta #optimizationtechniques #swarmintelligence #swarm #artificialintelligence #machinelearning

All Members-Based Optimizer (AMBO) || STEP-BY-STEP || ~xRay Pixy

Image
All Members-Based Optimizer (AMBO) Learn All Members-Based Optimizer Step-by-Step with Examples. Algorithm Type: Metaheuristic Optimization Technique Algorithm Main Idea: Make more use of the Population Matrix. Tested on Different Benchmark Test Functions. Algorithm Performance: Provide Better results in comparison with different metaheuristic optimization algorithms. Used for Solving Optimization Problems. ALGORITHM MAIN IDEA Make use of the Population Matrix and All Members can play role in Updating Algorithm Population. ALL MEMBERS-BASED OPTIMIZER STEPS STEP 01: Initialize Algorithm Important Parameters. STEP 02: Initialize Population Randomly in the Search Space. STEP 03: Evaluate Initial Population using the Fitness Function. STEP 04: Check While (Current Iteration < Maximum Iteration) Do STEP 05: Update Members Position and Best Member Position. STEP 06: Update Population Members using STAGE 01. STEP 07: Update Population Members using STAGE 02. STEP 08: Save Best Solut...
More posts