Posts

Showing posts from August 18, 2022

New Post

Confusion Matrix with Real-Life Examples || Artificial Intelligence || ~...

Image
Learn about the Confusion Matrix with Real-Life Examples. A confusion matrix is a table that shows how well an AI model makes predictions. It compares the actual results with the predicted ones and tells which are right or wrong. It includes True Positive (TP), False Positive (FP), False Negative (FN), and True Negative (TN). Video Chapters: Confusion Matrix in Artificial Intelligence 00:00 Introduction 00:12 Confusion Matrix 03:48 Metrices Derived from Confusion Matrix 04:26 Confusion Matrix Example 1 05:44 Confusion Matrix Example 2 08:10 Confusion Matrix Real-Life Uses #artificialintelligence #machinelearning #confusionmatrix #algorithm #optimization #research #happylearning #algorithms #meta #optimizationtechniques #swarmintelligence #swarm #artificialintelligence #machinelearning

Metaheuristics Search Space Design and Standard Testing Functions ~xRay ...

Image
Metaheuristics Search Space Design and Standard Testing Functions Video Chapters: Introduction: 00:00 Metaheuristics Testing Functions: 01:05 Metaheuristics Search Space: 05:40 Conclusion: 10:00 Metaheuristics Standard Benchmark Functions for Testing - Unimodel Test Functions - Multimodel Test Functions - Fixed Dimensions Test Functions - Hybrid Test Functions - Composition Test Functions Metaheuristics Search Space Design - Search Space - Search Space Bounds Metaheuristic Search Space Design and Meta-heuristic testing functions: Different testing functions that we can use for the comparison between different metaheuristic algorithms and we can analyze algorithm Performance, Stability, Convergence Speed, Accuracy, Efficiency and other. Unimodal test functions are used to check algorithm convergence property and Exploitation capability and the fitness curve in the unimodal test function is used to check the algorithm convergence speed. Multimodal test functions are used to chec...
More posts