Posts

Showing posts from August 15, 2021

New Post

Poplar Optimization Algorithm || Step-By-Step || ~xRay Pixy

Image
The Poplar Optimization Algorithm (POA) is a nature-inspired optimization method based on how poplar trees reproduce. It uses sexual propagation (seed dispersal by wind) for exploration and asexual reproduction (cutting and regrowth) for exploitation. Mutation and chaos factors help maintain diversity and prevent premature convergence, making POA efficient for solving complex optimization problems. Learn the Poplar Optimization Algorithm Step-By-Step using Examples. Video Chapters: Poplar Optimization Algorithm (POA) 00:00 Introduction 02:12 POA Applications 03:32 POA Steps 05:50 Execute Algorithm 1 13:45 Execute Algorithm 2 16:38 Execute Algorithm 3 18:15 Conclusion Main Points of the Poplar Optimization Algorithm (POA) Nature-Inspired Algorithm ā€“ Based on the reproductive mechanisms of poplar trees. Two Key Processes : Sexual Propagation (Seed Dispersal) ā€“ Uses wind to spread seeds, allowing broad exploration. Asexual Reproduction (Cuttings) ā€“ Strong branches grow ...

C++ Program to Calculate Area of Rectangle using Objects and Classes.

Image
C++ Program to Calculate Area of Rectangle using Objects and Classes. Calculate Area of Rectangle: Area = Length * width Program Output: Source Code  #include<iostream> #include<conio.h> using namespace std; class rectangle { private: int a, b; public: void setdata(int x, int y)  { a = x; b = y; } void area() { int area = a*b; cout<<"\n Area of Rectangle = " <<area; } }; int main() { rectangle r1, r2; //objects r1.setdata(15,40);  //object r1 called setdate() cout<<"\nFor First Rectangle "; r1.area(); // object r1 calls area() r2.setdata(30,60);  //object r1 called setdate() cout<<"\nFor First Rectangle "; r2.area(); // object r1 calls area() getch(); return 0; }
More posts