Posts

Showing posts from August 4, 2021

New Post

Algorithms Behind Space Missions ~xRay Pixy

Image
Learn different algorithms used in Space Missions. Video Link Video Chapters: Algorithms Behind Space Missions 00:00 Introduction 00:52 Space Missions 04:26 Space Missions Challenges 07:04 Algorithms Used in Space Missions 10:36 Optimization Techniques 11:44 Conclusion  NASA conducts space missions to explore the universe for various scientific, technological, and practical reasons: Understanding Our Place in the Universe Search for Life Beyond Earth Studying Earth from Space Advancing Technology Supporting Human Exploration Resource Utilization Inspiring Humanity Examples of NASA Space Missions Apollo Program: Sent humans to the Moon (1969–1972). Mars Rovers (Spirit, Opportunity, Perseverance): Explored Mars' surface and geology. Voyager Missions: Studied the outer planets and interstellar space. Hubble Space Telescope: Captured breathtaking images of the universe. International Space Station (ISS): Supports research in microgravity and international collaboration. Different ...

Invasive Weed Optimization (IWO) Algorithm Step-by-Step with Numerical E...

Image
Invasive Weed Optimization (IWO) Algorithm with Example Invasive Weed Optimization The invasive weed optimization algorithm (IWO) is a population-based metaheuristic optimization method inspired by the behavior of weed colonies. Weeds are u nwanted plants (plant in the wrong place). Weeds can change their behavior according to the environment and gets fitter. Weeds plant can be easily found in: Parks, Fields, Garden, and Lawns Invasive Weed Optimization Algorithm Steps. 1.) Initialization Phase Initialize all important parameters. 2.) Initialize Population. The initial population is created by spreading the finite number of seeds randomly in the search space. 3.) Compute Fitness Values.  Every seed will grow into a flowering plant and produce seeds. [Reproduction].  Seed production is based on fitness values so compute: Individual Fitness Value Best Fitness Value Worst Fitness Value 4.) Random distribution of germinated seeds. Determine new positions of seeds in the search sp...
More posts