Posts

Showing posts from August 23, 2022

New Post

Confusion Matrix with Real-Life Examples || Artificial Intelligence || ~...

Image
Learn about the Confusion Matrix with Real-Life Examples. A confusion matrix is a table that shows how well an AI model makes predictions. It compares the actual results with the predicted ones and tells which are right or wrong. It includes True Positive (TP), False Positive (FP), False Negative (FN), and True Negative (TN). Video Chapters: Confusion Matrix in Artificial Intelligence 00:00 Introduction 00:12 Confusion Matrix 03:48 Metrices Derived from Confusion Matrix 04:26 Confusion Matrix Example 1 05:44 Confusion Matrix Example 2 08:10 Confusion Matrix Real-Life Uses #artificialintelligence #machinelearning #confusionmatrix #algorithm #optimization #research #happylearning #algorithms #meta #optimizationtechniques #swarmintelligence #swarm #artificialintelligence #machinelearning

Fitness Values Calculation in Metaheuristics | Krill Herd Optimizer |

Image
Video Chapters: Krill Herd Optimization Algorithm Introduction: 00:00 KHO Parameters: 00:51 Krill's Position Initialization: 01:51 Objective Function Calculation: 03:52 Conclusion: 05:22 Learn How to Calculate Objective Function values for Metaheuristic Optimization Algorithm. Objective Function is also known as Cost Function, Fitness function, or Evaluation Function. Krill herd Optimization Algorithm Introduction, Numerical Examples: https://www.youtube.com/playlist?list=PLVLAu9B7VtkYR8GkHtTHV83AlR0WjGCfi Initialize the position for search agents randomly in the search space using this equation: Agent's Position in the Search Space : Using any Objective Function to calculate fitness values for each agent: Sphere Function is used here Fitness Values for each agent: Fitness(1) = 4.11424
More posts