Posts

Showing posts from March 12, 2025

New Post

Bermuda Triangle Optimizer

Image
VIDEO LINK The Bermuda Triangle Optimizer (BTO) is a nature-inspired algorithm that simulates a gravity-like pull in the Bermuda Triangle to find optimal solutions. Learn Bermuda Triangle Optimizer (BTO) Step-By-Step using Examples. Video Chapters: Bermuda Triangle Optimizer (BTO) 00:00 Introduction 00:34 About the Bermuda Triangle 02:06 Bermuda Triangle Optimizer  05:44 BTO STEPS 09:30 BTO Advantages 10:17 BTO Limitations 10:42 BTO Applications 11:07 Conclusion Bermuda Triangle Optimizer || Step-By-Step || ~xRay Pixy Video Link:  https://youtu.be/bBnsd7BBttg #optimization #algorithm #metaheuristic #robotics #deeplearning #ArtificialIntelligence #MachineLearning #computervision #research #projects #thesis #Python #optimizationproblem #optimizationalgorithms 

Benchmarking Optimization Algorithms | Mean and Standard Deviation Calculation

Image
 Benchmarking Optimization Algorithms Watch Now:  https://youtu.be/uBlACmRLv14 Learn about Benchmark Functions & Role of Mean & Standard Deviation in Metaheuristics Video Chapters: Mean & SD Analysis in Optimization Algorithms 00:00 Introduction 00:33 Why Benchmarking is used in Metaheuristic Algorithms? 03:26 Benchmark Function Testing 07:53 Calculate Mean and SD from Benchmark Functions 12:12 Calculation using Python 12:30 Algorithms Comparison 13:40 Conclusion Benchmarking is essential in metaheuristic algorithms to evaluate and compare their performance using standardized test functions. It helps measure accuracy, stability, and efficiency before applying these algorithms to real-world problems. Key concepts include: Mean (μ): Indicates the average performance of an algorithm. Standard Deviation (σ): Measures result in variability across multiple runs, reflecting stability. Benchmark Functions: Artificial test functions (e.g., Sphere, Rastrigin, Ackl...
More posts