Posts

Showing posts from September 17, 2024

New Post

Algorithms Behind Space Missions ~xRay Pixy

Image
Learn different algorithms used in Space Missions. Video Link Video Chapters: Algorithms Behind Space Missions 00:00 Introduction 00:52 Space Missions 04:26 Space Missions Challenges 07:04 Algorithms Used in Space Missions 10:36 Optimization Techniques 11:44 Conclusion  NASA conducts space missions to explore the universe for various scientific, technological, and practical reasons: Understanding Our Place in the Universe Search for Life Beyond Earth Studying Earth from Space Advancing Technology Supporting Human Exploration Resource Utilization Inspiring Humanity Examples of NASA Space Missions Apollo Program: Sent humans to the Moon (1969–1972). Mars Rovers (Spirit, Opportunity, Perseverance): Explored Mars' surface and geology. Voyager Missions: Studied the outer planets and interstellar space. Hubble Space Telescope: Captured breathtaking images of the universe. International Space Station (ISS): Supports research in microgravity and international collaboration. Different ...
Image
Video Link Multi-Block Local Binary Pattern || Calculate LBP Corner Pixel Values ||  https://youtu.be/o8qfJWQ_FG0  Local Binary Patterns (LBP) is a simple and efficient technique used in image processing to describe the texture or patterns within an image. LBP is widely used for applications like face recognition and texture classification since it is easy to compute and very effective at capturing the texture in photos.  Step How LBP WORKS:  For each pixel in the image, LBP looks at the pixel’s neighbors, typically the 8 pixels surrounding it in a 3x3 grid. LBP compares each of these neighboring pixels with the center pixel. If the neighboring pixel has a value greater than or equal to the center pixel, it's marked as 1; otherwise, it's marked as 0. This comparison forms a binary number for the pixel.  The binary number is then converted into a decimal value. This value represents the texture pattern at that pixel. By doing this for every pixel in the image, LB...
More posts