Video Chapters: Introduction: 00:00 Aquila Optimizer: 00:31 Aquila Hunting Methods: 02:09 Aquila Optimizer Steps: 03:33 Aquila Optimizer Mathematical Models: 06:07 Conclusion: 13:00 Aquila Optimization Algorithm is inspired by the Aquila Behavior in the nature. This algorithm is basically inspired by the aquilas hunting methods. How they catch their prey in the real life? Aquila Hunting Methods: Method 01: High Soar with Vertical Stoop. [i.e., Expanded Exploration] Method 02: Contour Flight with Short Glide Attack. [i.e., Narrowed Exploration] Method 03: Low Flight with Slow Decent Attack. [i.e., Expanded Exploitation] Method 04: Walking and Grab the Prey. [i.e., Narrowed Exploitation] Aquila Optimization Algorithm Steps: Step 01: Initialize Algorithm Parameters and Population Randomly. Step 02: Check While (Current Iteration <= Maximum Iteration) Step 03: Evaluate Agents Performance using Fitness Function. Step 04: For all agents update Location mean value. Step 05: Update Levy