New Post

Poplar Optimization Algorithm || Step-By-Step || ~xRay Pixy

Image
The Poplar Optimization Algorithm (POA) is a nature-inspired optimization method based on how poplar trees reproduce. It uses sexual propagation (seed dispersal by wind) for exploration and asexual reproduction (cutting and regrowth) for exploitation. Mutation and chaos factors help maintain diversity and prevent premature convergence, making POA efficient for solving complex optimization problems. Learn the Poplar Optimization Algorithm Step-By-Step using Examples. Video Chapters: Poplar Optimization Algorithm (POA) 00:00 Introduction 02:12 POA Applications 03:32 POA Steps 05:50 Execute Algorithm 1 13:45 Execute Algorithm 2 16:38 Execute Algorithm 3 18:15 Conclusion Main Points of the Poplar Optimization Algorithm (POA) Nature-Inspired Algorithm ā€“ Based on the reproductive mechanisms of poplar trees. Two Key Processes : Sexual Propagation (Seed Dispersal) ā€“ Uses wind to spread seeds, allowing broad exploration. Asexual Reproduction (Cuttings) ā€“ Strong branches grow ...

GWO Python Code || Grey Wolf Optimizer in Python || ~xRay Pixy


SOURCE CODE

import numpy as np
import tkinter as tk
import matplotlib.pyplot as plt
from tkinter import messagebox

def initialization (PopSize,D,LB,UB):
    SS_Boundary = len(LB) if isinstance(UB,(list,np.ndarray)) else 1
    if SS_Boundary ==1:
        Positions = np.random.rand(PopSize,D)*(UB-LB)+LB
    else:
        Positions = np.zeros((PopSize,D))
        for i in range(D):
            Positions[:,i]=np.random.rand(PopSize)*(UB[i]-LB[i])+LB[i]
    return Positions

def GWO(PopSize,MaxT,LB,UB,D,Fobj):
    Alpha_Pos = np.zeros(D)
    Alpha_Fit = np.inf
    Beta_Pos = np.zeros(D)
    Beta_Fit = np.inf
    Delta_Pos = np.zeros(D)
    Delta_Fit = np.inf

    Positions = initialization(PopSize,D,UB,LB)
    Convergence_curve = np.zeros(MaxT)

    l = 0
    while l<MaxT:
        for i in range (Positions.shape[0]):
            BB_UB = Positions[i,:]>UB 
            BB_LB = Positions[i,:]<LB
            Positions[i,:] = (Positions[i,:]*(~(BB_UB+BB_LB)))+UB*BB_UB+LB*BB_LB
            Fitness = Fobj(Positions[i,:])

            if Fitness<Alpha_Fit:
                Alpha_Fit=Fitness
                Alpha_Pos=Positions[i,:]

            if Fitness>Alpha_Fit and Fitness<Beta_Fit:
                Beta_Fit=Fitness
                Beta_Pos=Positions[i,:]
            
            if Fitness>Alpha_Fit and Fitness>Beta_Fit and Fitness<Delta_Fit:
                Delta_Fit=Fitness
                Delta_Pos=Positions[i,:]
        
        a = 2-1*(2/MaxT)
        for i in range (Positions.shape[0]):
            for j in range (Positions.shape[1]):
                r1=np.random.random()
                r2=np.random.random()

                A1 = 2*a*r1-a
                C1 = 2 * r2

                D_Alpha = abs(C1*Alpha_Pos[j]-Positions[i,j])
                X1 = Alpha_Pos[j]-A1*D_Alpha
                
                r1=np.random.random()
                r2=np.random.random()

                A2 = 2*a*r1-a
                C2=2*r2

                D_Beta = abs(C2*Beta_Pos[j]-Positions[i,j])
                X2 = Beta_Pos[j]-A2*D_Beta

                r1 = np.random.random()
                r2 = np.random.random()

                A3 = 2*a*r1-a
                C3 = 2*r2

                D_Delta = abs(C3 * Delta_Pos[j] - Positions[i,j])
                X3 = Delta_Pos[j] - A3 * D_Delta

                Positions[i,j] = (X1 + X2 + X3) / 3
        l += 1
        Convergence_curve[l - 1] = Alpha_Fit
    return Alpha_Fit, Alpha_Pos, Convergence_curve

if __name__ == "__main__":
    def F1(x):
        return np.sum(x ** 2)

    Fun_name = F1
    LB = -100
    UB = 100
    D = 30
    PopSize= 100
    MaxT = 100

    bestfit, bestsol, convergence_curve = GWO(PopSize,MaxT,LB,UB,D,Fun_name)
    print("Best Fitness =", bestfit)
    print("Best Solution = ",bestsol)

# Show the final result in a message box
    root = tk.Tk()
    root.withdraw()
    messagebox.showinfo("GWO Result", f"Best Fitness: {bestfit}\nBest Solution: {bestsol}")




Comments

Popular Post

PARTICLE SWARM OPTIMIZATION ALGORITHM NUMERICAL EXAMPLE

Cuckoo Search Algorithm for Optimization Problems

Particle Swarm Optimization (PSO)

PSO (Particle Swarm Optimization) Example Step-by-Step

PSO Python Code || Particle Swarm Optimization in Python || ~xRay Pixy

how is the LBP |Local Binary Pattern| values calculated? Step-by-Step with Example

Whale Optimization Algorithm Code Implementation || WOA CODE || ~xRay Pixy

Grey Wolf Optimization Algorithm

Grey Wolf Optimization Algorithm Numerical Example

Bat algorithm Explanation Step by Step with example