Learn how to implement an obstacle-avoiding path planning for a robot using the Grey Wolf Optimization (GWO) in a static environment. #optimization #algorithm #metaheuristic #robotics #deeplearning #ArtificialIntelligence #MachineLearning #computervision #research #projects #thesis #Python
Video Chapters: Dwarf Mongoose Optimization Algorithm00:00 Introduction
02:10 About Mongoose
03:55 Mongoose Communication
05:00 Mongoose Lifestyle
07:23 Dwarf Mongoose Optimization Algorithm Steps
11:29 Optimization Process Start
16:00 Conclusion
New Metaheuristic Optimization Algorithm Dwarf Mongoose Optimization
We can use this algorithm to solve different optimization problems as when this algorithm is tested on different continuous, discrete optimization problems it provides efficient results. So, we can use this algorithm to solve complex optimization problems This algorithm is basically inspired by the foraging behavior of mongooses in real life. Dwarf Mongoose Optimizer is introduced in 2022 by Jeffrey and all. It is a swarm intelligence-based optimization algorithm that we can use to solve complex optimization problems. This algorithm provides efficient results in comparison with seven different algorithms as you can see here Particle Swarm Optimizer, Gray wolf Optimizer, Ant Colony optimization, and others. This algorithm is also applied to solve 12 different engineering design problems and it provides excellent results. It is basically inspired by the dwarf Mongoose's behavior in real life. This algorithm mimics Mongoose Behavior, lifestyle, and foraging strategies.
About Mongoose
There are more than 30 species of mongoose worldwide, most species of mongoose found in Africa. Common dwarf Mongoose are the smallest African carnivores, they have large pointed heads, small ears, long tails, soft fur, and Long Claws. They live in family groups and Forage as a unit. Mongoose Forage, fight, and travel together as a team and they stay in one area for one week. Mongoose group size is up to 10 to 30 members and the group leader is Alpha's oldest dominant pair. They live in Burrows and their predators are eagles, large snakes, large Mongoose species, and they also use termite mounts for shelter and Refugee from enemies. Mongoose's diet includes small animals like frogs, birds, battles, fish, snakes, crabs, spiders, grasshoppers, larvae, and others. Mongoose length is about 18 to 47 centimeters, and weight is 300 to 400 grams, length, and weight depending on species. Mongoose lifespan is 8 to 18 years and in captivity, it is recorded to be 20 years. Mongooses can walk, run, and climb.
Mongoose Communication
They also have loud voices and communicate with each other continuously using a variety of twitters and whistles. In the Mongoose group, vocal communication is very important to coordinate group
members during foraging or when they are moving from one sleeping mound to another. In Mongoose communication here we have two sounds: Panic sound and excitement sound. The panic sound indicates any danger around, and excitement calls when new food sources are discovered. Mongooses are territorial mammals. They use secret sense for marking their territories. They use the marking for group members so they can identify one another.
In the Mongoose group, we have further subgroups:
Scouts: Scout search for new Sleeping mounds.
Babysitters: Babysitters take care of young mongoose when other group members are searching for food and new Sleeping Mounds. Babysitters are mixed both male and female and after certain intervals, babysitters are exchanged with the alpha group for foraging.
Alpha Mongoose: Foraging is done by the Alpha group.
PARTICLE SWARM OPTIMIZATION ALGORITHM NUMERICAL EXAMPLE PSO is a computational method that Optimizes a problem. It is a Population-based stochastic search algorithm. PSO is inspired by the Social Behavior of Birds flocking. n Particle Swarm Optimization the solution of the problem is represented using Particles. [Flocking birds are replaced with particles for algorithm simplicity]. Objective Function is used for the performance evaluation for each particle / agent in the current population. PSO solved problems by having a Population (called Swarms) of Candidate Solutions (Particles). Local and global optimal solutions are used to update particle position in each iteration. Particle Swarm Optimization (PSO) Algorithm step-by-step explanation with Numerical Example and source code implementation. - PART 2 [Example 2] 1.) Initialize Population [Current Iteration (t) = 0] Population Size = 4; 𝑥𝑖 : (i = 1,2,3,4) and (t = 0) 𝑥1 =1.3; 𝑥2=4.3; 𝑥3=0.4; 𝑥4=−1.2 2.) Fitness Function used:
Cuckoo Search Algorithm - Metaheuristic Optimization Algorithm What is Cuckoo Search Algorithm? Cuckoo Search Algorithm is a Meta-Heuristic Algorithm. Cuckoo Search Algorithm is inspired by some Cuckoo species laying their eggs in the nest of other species of birds. In this algorithm, we have 2 bird Species. 1.) Cuckoo birds 2.) Host Birds (Other Species) What if Host Bird discovered cuckoo eggs? Cuckoo eggs can be found by Host Bird. Host bird discovers cuckoos egg with Probability of discovery of alien eggs. If Host Bird Discovered Cuckoo Bird Eggs. The host bird can throw the egg away. Abandon the nest and build a completely new nest. Mathematically, Each egg represent a solution and it is stored in the host bird nest. In this algorithm Artificial Cuckoo Birds are used. Artificial Cuckoo can lay one egg at a time. We will replace New and better solutions with less fit solutions. It means eggs that are more similar to host bird has opportunity to develop in the new generation a
Particle Swarm Optimization (PSO) is a p opulation-based stochastic search algorithm. PSO is inspired by the Social Behavior of Birds flocking. PSO is a computational method that Optimizes a problem. PSO searches for Optima by updating generations. It is popular is an intelligent metaheuristic algorithm. In Particle Swarm Optimization the solution of the problem is represented using Particles. [Flocking birds are replaced with particles for algorithm simplicity]. Objective Function is used for the performance evaluation for each particle / agent in the current population. After a number of iterations agents / particles will find out optimal solution in the search space. Q. What is PSO? A. PSO is a computational method that Optimizes a problem. Q. How PSO will optimize? A. By Improving a Candidate Solution. Q. How PSO Solve Problems? A. PSO solved problems by having a Population (called Swarms) of Candidate Solutions (Particles). Local and global optimal solutions are used to upda
Particle swarm optimization (PSO) What is meant by PSO? PSO is a computational method that Optimizes a problem. It is a Population-based stochastic search algorithm. PSO is inspired by the Social Behavior of Birds flocking. n Particle Swarm Optimization the solution of the problem is represented using Particles. [Flocking birds are replaced with particles for algorithm simplicity]. Objective Function is used for the performance evaluation for each particle / agent in the current population. PSO solved problems by having a Population (called Swarms) of Candidate Solutions (Particles). Local and global optimal solutions are used to update particle position in each iteration. How PSO will optimize? By Improving a Candidate Solution. How PSO Solve Problems? PSO solved problems by having a Population (called Swarms) of Candidate Solutions (Particles). The population of Candidate Solutions (i.e., Particles). What is Search Space in PSO? It is the range in which the algorithm computes the op
Local Binary Pattern Introduction to Local Binary Pattern (LBP) Q. What is Digital Image? A. Digital images are collections of pixels or numbers ( range from 0 to 255). Q. What is Pixel? A. Pixel is the smallest element of any digital image. Pixel can be categorized as Dark Pixel and Bright Pixel. Dark pixels contain low pixel values and bright pixels contain high pixel values. Q. Explain Local Binary Pattern (LBP)? A. Local binary pattern is a popular technique used for image processing. We can use the local binary pattern for face detection and face recognition. Q. What is LBP Operator? A. LBP operator is an image operator. We can transform images into arrays using the LBP operator. Q. How LBP values are computed? A. LBP works in 3x3 (it contain a 9-pixel value ). Local binary pattern looks at nine pixels at a time. Using each 3x3 window in the digital image, we can extract an LBP code. Q. How to Obtain LBP operator value? A. LBP operator values can be obtained by using the simp
There are about 1000 species of Bats. Bat Algorithm is based on the echolocation behavior of Micro Bats with varying pulse rates of emission and loudness. All bats use echolocation to sense distance and background barriers. Microbats are small to medium-sized flying mammals. Micro Bats used a Sonar that is known as Echolocation to detect their prey. Bats fly randomly with the velocity at the position with a fixed frequency and loudness for prey. Q. Whats is Frequency? A. Frequency is the number of waves that pass a fixed point in unit time. Wavelength is the minimum distance between two nearest particles which are in the same phase. Here, Sound waves are used by microbats to detect prey. Q. What is Position? A. A place where something or someone is located. Q. What is Velocity? A. Speed of something in a given direction. Q. What is loudness. A. Loudness refers to how soft or loud sound seems to listeners. Q. What is pulse rate? A. Wave or vibration. In th
Grey Wolf Optimization Algorithm (GWO) Grey Wolf Optimization Grey Wolf Optimization Algorithm is a metaheuristic proposed by Mirjaliali Mohammad and Lewis, 2014. Grey Wolf Optimizer is inspired by the social hierarchy and the hunting technique of Grey Wolves. What is Metaheuristic? Metaheuristic means a High-level problem-independent algorithmic framework (develop optimization algorithms). Metaheuristic algorithms find the best solution out of all possible solutions of optimization. Who are the Grey Wolves? Wolf (Animal): Wolf Lived in a highly organized pack. Also known as Gray wolf or Grey Wolf, is a large canine. Wolf Speed is 50-60 km/h. Their Lifespan is 6-8 years (in the wild). Scientific Name: Canis Lupus. Family: Canidae (Biological family of dog-like carnivorans). Grey Wolves lived in a highly organized pack. The average pack size ranges from 5-12. 4 different ranks of wolves in a pack: Alpha Wolf, Beta Wolf, Delta Wolf, and Omega Wolf. How Grey Wolf Optimization Algorithm
Grey Wolf Optimization Algorithm Numerical Example Grey Wolf Optimization Algorithm Steps 1.) Initialize Grey Wolf Population. 2.) Initialize a, A, and C. 3.) Calculate the fitness of each search agent. 4.) 𝑿_𝜶 = best search agent 5.) 𝑿_𝜷 = second-best search agent 6.) 𝑿_𝜹 = third best search agent. 7.) while (t<Max number of iteration) 8.) For each search agent update the position of the current search agent by the above equations end for 9.) update a, A, and C 10.) Calculate the fitness of all search agents. 11.) update 𝑿_𝜶, 𝑿_𝜷, 𝑿_𝜹 12.) t = t+1 end while 13.) return 𝑿_𝜶 Grey Wolf Optimization Algorithm Numerical Example STEP 1. Initialize the Grey wolf Population [Initial Position for each Search Agent] 𝒙_(𝒊 ) (i = 1,2,3,…n) n = 6 // Number of Search Agents [ -100, 100] // Range Initial Wolf Position 3.2228 4.1553 -3.8197 4.2330 1.3554 -4.1212 STEP 2. Calculate Fitness for Each Search Agent. Objective Function: F6(x) = su
Whale Optimization Algorithm Code Implementation Whale Optimization Algorithm Code Files function obj_fun(test_fun) switch test_fun case 'F1' x = -100:2:100; y=x; case 'F2' x = -10:2:10; y=x; end end function [LB,UB,D,FitFun]=test_fun_info(C) switch C case 'F1' FitFun = @F1; LB = -100; UB = 100; D = 30; case 'F2' FitFun = @F2; LB = -10; UB = 10; D = 30; end % F1 Test Function function r = F1(x) r = sum(x.^2); end % F2 Test Function function r = F2(x) r = sum(abs(x))+prod(abs(x)); end end function Position = initialize(Pop_Size,D,UB,LB) SS_Bounds = size(UB,2); if SS_Bounds == 1 Position = rand(Pop_Size,D).*(UB-LB)+LB; end if SS_Bounds>1 for i = 1:D UB_i = UB(i); LB_i = LB(i); Position(:,i) = rand(Pop_Size,1).*(UB_i-LB_i)+LB_i; end end end function [Best_Val,Best_Pos,Convergence_Curve]=WOA(
Comments
Post a Comment