New Post

Nash Equilibrium In Game Theory ~xRay Pixy

Image
 Video Link  CLICK HERE... Learn Nash Equilibrium In Game Theory Step-By-Step Using Examples. Video Chapters: Nash Equilibrium  00:00 Introduction 00:19 Topics Covered 00:33 Nash Equilibrium  01:55 Example 1  02:30 Example 2 04:46 Game Core Elements 06:41 Types of Game Strategies 06:55  Prisoner’s Dilemma  07:17  Prisoner’s Dilemma Example 3 09:16 Dominated Strategy  10:56 Applications 11:34 Conclusion The Nash Equilibrium is a concept in game theory that describes a situation where no player can benefit by changing their strategy while the other players keep their strategies unchanged.  No player can increase their payoff by changing their choice alone while others keep theirs the same. Example : If Chrysler, Ford, and GM each choose their production levels so that no company can make more money by changing their choice, it’s a Nash Equilibrium Prisoner’s Dilemma : Two criminals are arrested and interrogated separately. Each has two ...

POA - CODE || Pelican Optimization Algorithm Code Implementation ||

Learn Pelican Optimization Algorithm Code Implementation Step-By-Step POA-CODE Video Chapters: 00:00 Introduction 01:22 Test Function Information Program File 02:37 Pelican Optimization Algorithm Program File 11:23 Main Program File 12:30 Conclusion

1.) Test Function Information File
function [LB,UB,D,FitF] = test_fun_info(C) switch C case 'F1' FitF = @F1; LB=-100; UB =100; D =30; case 'F2' FitF = @F2; LB=-10; UB =10; D =30; case 'F3' FitF = @F3; LB=0; UB=1; D=3; end end % F1 function R = F1(x) R=sum(x.^2); end % F2 function R = F2(x) R=sum(abs(x))+prod(abs(x)); end

2.) POA File
function[Best_Solution,Best_Location,Sol_con_Curve]=POA(PopSize,MaxT,LB,UB,D,FitF) LB=ones(1,D).*(LB); % Lower limit UB=ones(1,D).*(UB); % Upper limit % POPULATION INITIALIZATION PHASE for i=1:D X(:,i) = LB(i)+rand(PopSize,1).*(UB(i) - LB(i)); % Initial population end % FITNESS VALUES CALCULATION for i =1:PopSize L=X(i,:); FitnessVal(i)=FitF(L); end %% for t=1:MaxT %% update the best condidate solution [Best_Agent_Val , Best_Agent_Loc]=min(FitnessVal); if t==1 Best_Pos=X(Best_Agent_Loc,:); % Optimal location Best_Val=Best_Agent_Val; % The optimization objective function elseif Best_Agent_Val<Best_Val Best_Val=Best_Agent_Val; Best_Pos=X(Best_Agent_Loc,:); end %% UPDATE location of food Agents_Target=[]; g=randperm(PopSize,1); Agents_Target=X(g,:); Agents_Target=FitnessVal(g); %% for i=1:PopSize %% PHASE 1: Moving towards prey (exploration phase) I=round(1+rand(1,1)); if FitnessVal(i)> Agents_Target New_Pos=X(i,:)+ rand(1,1).*(Agents_Target-I.* X(i,:)); %Eq(4) else New_Pos=X(i,:)+ rand(1,1).*(X(i,:)-1.*Agents_Target); %Eq(4) end New_Pos= max(New_Pos,LB); New_Pos = min(New_Pos,UB); % Updating X_i using (5) New_Fit = FitF(New_Pos); if New_Fit <= FitnessVal(i) X(i,:) = New_Pos; FitnessVal(i)=New_Fit; end %% END PHASE 1: Moving towards prey (exploration phase) %% PHASE 2: Winging on the water surface (exploitation phase) New_Pos=X(i,:)+0.2*(1-t/MaxT).*(2*rand(1,D)-1).*X(i,:);% Eq(6) New_Pos= max(New_Pos,LB); New_Pos = min(New_Pos,UB); % Updating X_i using (7) New_Fit = FitF(New_Pos); if New_Fit <= FitnessVal(i) X(i,:) = New_Pos; FitnessVal(i)=New_Fit; end %% END PHASE 2: Winging on the water surface (exploitation phase) end best_so_far(t)=Best_Val; average(t) = mean (FitnessVal); end Best_Solution=Best_Val; Best_Location=Best_Pos; Sol_con_Curve=best_so_far; end


3.) Main File
clc clear all %Test Function Test_Fun='F3'; % Total Number of Pelicans PopSize=50; % Maximum number of iteration MaxT=500; % Test Function Details [LB,UB,D,FitF]=test_fun_info(Test_Fun); % POA Calculation [BestVal,BestLoc,Sol_con_Curve]=POA(PopSize,MaxT,LB,UB,D,FitF); subplot(1,1,1); semilogy(Sol_con_Curve,'Color','r'); title('Convergence Curve'); xlabel('Iteration'); ylabel('Best Value'); axis tight grid on box on legend ('POA') % Display Solution display(['Best Position' [num2str(Test_Fun)],' = ', num2str(BestLoc)]); display(['Best Solution' [num2str(Test_Fun)],' = ', num2str(BestVal)]);

Comments

Popular Post

PARTICLE SWARM OPTIMIZATION ALGORITHM NUMERICAL EXAMPLE

Cuckoo Search Algorithm for Optimization Problems

Particle Swarm Optimization (PSO)

PSO (Particle Swarm Optimization) Example Step-by-Step

how is the LBP |Local Binary Pattern| values calculated? Step-by-Step with Example

PSO Python Code || Particle Swarm Optimization in Python || ~xRay Pixy

Grey Wolf Optimization Algorithm

Bat algorithm Explanation Step by Step with example

Grey Wolf Optimization Algorithm Numerical Example

Whale Optimization Algorithm Code Implementation || WOA CODE || ~xRay Pixy