New Post

Poplar Optimization Algorithm || Step-By-Step || ~xRay Pixy

Image
The Poplar Optimization Algorithm (POA) is a nature-inspired optimization method based on how poplar trees reproduce. It uses sexual propagation (seed dispersal by wind) for exploration and asexual reproduction (cutting and regrowth) for exploitation. Mutation and chaos factors help maintain diversity and prevent premature convergence, making POA efficient for solving complex optimization problems. Learn the Poplar Optimization Algorithm Step-By-Step using Examples. Video Chapters: Poplar Optimization Algorithm (POA) 00:00 Introduction 02:12 POA Applications 03:32 POA Steps 05:50 Execute Algorithm 1 13:45 Execute Algorithm 2 16:38 Execute Algorithm 3 18:15 Conclusion Main Points of the Poplar Optimization Algorithm (POA) Nature-Inspired Algorithm ā€“ Based on the reproductive mechanisms of poplar trees. Two Key Processes : Sexual Propagation (Seed Dispersal) ā€“ Uses wind to spread seeds, allowing broad exploration. Asexual Reproduction (Cuttings) ā€“ Strong branches grow ...

POA - CODE || Pelican Optimization Algorithm Code Implementation ||

Learn Pelican Optimization Algorithm Code Implementation Step-By-Step POA-CODE Video Chapters: 00:00 Introduction 01:22 Test Function Information Program File 02:37 Pelican Optimization Algorithm Program File 11:23 Main Program File 12:30 Conclusion

1.) Test Function Information File
function [LB,UB,D,FitF] = test_fun_info(C) switch C case 'F1' FitF = @F1; LB=-100; UB =100; D =30; case 'F2' FitF = @F2; LB=-10; UB =10; D =30; case 'F3' FitF = @F3; LB=0; UB=1; D=3; end end % F1 function R = F1(x) R=sum(x.^2); end % F2 function R = F2(x) R=sum(abs(x))+prod(abs(x)); end

2.) POA File
function[Best_Solution,Best_Location,Sol_con_Curve]=POA(PopSize,MaxT,LB,UB,D,FitF) LB=ones(1,D).*(LB); % Lower limit UB=ones(1,D).*(UB); % Upper limit % POPULATION INITIALIZATION PHASE for i=1:D X(:,i) = LB(i)+rand(PopSize,1).*(UB(i) - LB(i)); % Initial population end % FITNESS VALUES CALCULATION for i =1:PopSize L=X(i,:); FitnessVal(i)=FitF(L); end %% for t=1:MaxT %% update the best condidate solution [Best_Agent_Val , Best_Agent_Loc]=min(FitnessVal); if t==1 Best_Pos=X(Best_Agent_Loc,:); % Optimal location Best_Val=Best_Agent_Val; % The optimization objective function elseif Best_Agent_Val<Best_Val Best_Val=Best_Agent_Val; Best_Pos=X(Best_Agent_Loc,:); end %% UPDATE location of food Agents_Target=[]; g=randperm(PopSize,1); Agents_Target=X(g,:); Agents_Target=FitnessVal(g); %% for i=1:PopSize %% PHASE 1: Moving towards prey (exploration phase) I=round(1+rand(1,1)); if FitnessVal(i)> Agents_Target New_Pos=X(i,:)+ rand(1,1).*(Agents_Target-I.* X(i,:)); %Eq(4) else New_Pos=X(i,:)+ rand(1,1).*(X(i,:)-1.*Agents_Target); %Eq(4) end New_Pos= max(New_Pos,LB); New_Pos = min(New_Pos,UB); % Updating X_i using (5) New_Fit = FitF(New_Pos); if New_Fit <= FitnessVal(i) X(i,:) = New_Pos; FitnessVal(i)=New_Fit; end %% END PHASE 1: Moving towards prey (exploration phase) %% PHASE 2: Winging on the water surface (exploitation phase) New_Pos=X(i,:)+0.2*(1-t/MaxT).*(2*rand(1,D)-1).*X(i,:);% Eq(6) New_Pos= max(New_Pos,LB); New_Pos = min(New_Pos,UB); % Updating X_i using (7) New_Fit = FitF(New_Pos); if New_Fit <= FitnessVal(i) X(i,:) = New_Pos; FitnessVal(i)=New_Fit; end %% END PHASE 2: Winging on the water surface (exploitation phase) end best_so_far(t)=Best_Val; average(t) = mean (FitnessVal); end Best_Solution=Best_Val; Best_Location=Best_Pos; Sol_con_Curve=best_so_far; end


3.) Main File
clc clear all %Test Function Test_Fun='F3'; % Total Number of Pelicans PopSize=50; % Maximum number of iteration MaxT=500; % Test Function Details [LB,UB,D,FitF]=test_fun_info(Test_Fun); % POA Calculation [BestVal,BestLoc,Sol_con_Curve]=POA(PopSize,MaxT,LB,UB,D,FitF); subplot(1,1,1); semilogy(Sol_con_Curve,'Color','r'); title('Convergence Curve'); xlabel('Iteration'); ylabel('Best Value'); axis tight grid on box on legend ('POA') % Display Solution display(['Best Position' [num2str(Test_Fun)],' = ', num2str(BestLoc)]); display(['Best Solution' [num2str(Test_Fun)],' = ', num2str(BestVal)]);

Comments

Popular Post

PARTICLE SWARM OPTIMIZATION ALGORITHM NUMERICAL EXAMPLE

Cuckoo Search Algorithm for Optimization Problems

Particle Swarm Optimization (PSO)

PSO (Particle Swarm Optimization) Example Step-by-Step

PSO Python Code || Particle Swarm Optimization in Python || ~xRay Pixy

how is the LBP |Local Binary Pattern| values calculated? Step-by-Step with Example

Whale Optimization Algorithm Code Implementation || WOA CODE || ~xRay Pixy

Grey Wolf Optimization Algorithm

Grey Wolf Optimization Algorithm Numerical Example

Bat algorithm Explanation Step by Step with example