New Post

Nash Equilibrium In Game Theory ~xRay Pixy

Image
 Video Link  CLICK HERE... Learn Nash Equilibrium In Game Theory Step-By-Step Using Examples. Video Chapters: Nash Equilibrium  00:00 Introduction 00:19 Topics Covered 00:33 Nash Equilibrium  01:55 Example 1  02:30 Example 2 04:46 Game Core Elements 06:41 Types of Game Strategies 06:55  Prisoner’s Dilemma  07:17  Prisoner’s Dilemma Example 3 09:16 Dominated Strategy  10:56 Applications 11:34 Conclusion The Nash Equilibrium is a concept in game theory that describes a situation where no player can benefit by changing their strategy while the other players keep their strategies unchanged.  No player can increase their payoff by changing their choice alone while others keep theirs the same. Example : If Chrysler, Ford, and GM each choose their production levels so that no company can make more money by changing their choice, it’s a Nash Equilibrium Prisoner’s Dilemma : Two criminals are arrested and interrogated separately. Each has two ...

BAT ALGORITHM || PYTHON CODE || ~xRay Pixy


Learn Bat Algorithm Implementation in Python. Video Chapters: Bat Algorithm 00:00 Introduction 00:42 Bat Algorithm Key Concepts 01:58 Bat Algorithm Pseudocode 02:35 Objective Function 02:49 Parameters 03:09 Python Code 06:30 BA Main Loop Start 12:30 Result

The Bat Algorithm is a nature-inspired optimization algorithm developed by Xin-She Yang in 2010. It is based on the echolocation behavior of bats. Bats use echolocation to detect prey, avoid obstacles, and navigate in the dark. The algorithm simulates this behavior to find optimal solutions in complex optimization problems.

Applications:

The Bat Algorithm has been used in various fields, including engineering design, image processing, data mining, and robotics, for solving complex optimization problems.


PYTHON CODE:

import numpy as np

# Define the objective function 

def objective_function(x):

    return np.sum(x**2)

# Initialize the bat population

def initialize_bats(n_bats, dim, lower_bound, upper_bound, f_min, f_max, A0, r0):

    bats = np.random.uniform(lower_bound, upper_bound, (n_bats, dim))

    velocities = np.zeros((n_bats, dim))

    frequencies = np.random.uniform(f_min, f_max, n_bats)  # Initialize frequencies

    pulse_rates = r0 * np.ones(n_bats)  # Initialize pulse rates

    loudness = A0 * np.ones(n_bats)  # Initialize loudness

    return bats, velocities, frequencies, pulse_rates, loudness

# Update position and velocity

def update_position_velocity(bats, velocities, frequencies, best_bat, lower_bound, upper_bound):

    velocities += (bats - best_bat) * frequencies[:, np.newaxis]  # Velocity update

    bats += velocities  # Position update

    # Apply boundaries

    bats = np.clip(bats, lower_bound, upper_bound)

    return bats, velocities

# Local search

def local_search(bat, best_bat, avg_loudness):

    epsilon = np.random.uniform(-1, 1, bat.shape)

    return best_bat + epsilon * avg_loudness

# Bat algorithm main loop start

def bat_algorithm(n_bats, dim, lower_bound, upper_bound, max_iter, f_min=0, f_max=100, alpha=0.9, gamma=0.9, A0=1, r0=0.5):

    # Initialize bats

    bats, velocities, frequencies, pulse_rates, loudness = initialize_bats(n_bats, dim, lower_bound, upper_bound, f_min, f_max, A0, r0)

    fitness = np.array([objective_function(bat) for bat in bats])

    best_bat = bats[np.argmin(fitness)]

    best_fitness = np.min(fitness)

    for t in range(max_iter):

        for i in range(n_bats):

            # Generate new solutions

            bats, velocities = update_position_velocity(bats, velocities, frequencies, best_bat, lower_bound, upper_bound)

            if np.random.rand() > pulse_rates[i]:

                # Perform a local search

                avg_loudness = np.mean(loudness)

                new_bat = local_search(bats[i], best_bat, avg_loudness)

            else:

                new_bat = bats[i]

            new_fitness = objective_function(new_bat)

            if np.random.rand() < loudness[i] and new_fitness < fitness[i]:

                # Accept the new solution

                bats[i] = new_bat

                fitness[i] = new_fitness

                loudness[i] *= alpha  # Update loudness using At+1 = α * At

                pulse_rates[i] = r0 * (1 - np.exp(-gamma * t))  # Update pulse rate using rt+1 = r0 * (1 - exp(-γ * t))

            if new_fitness < best_fitness:

                best_bat = new_bat

                best_fitness = new_fitness

    return best_bat, best_fitness

# Parameters

n_bats = 20

dim = 5

lower_bound = -10

upper_bound = 10

max_iter = 1000

best_solution, best_value = bat_algorithm(n_bats, dim, lower_bound, upper_bound, max_iter)

print("Best solution found:", best_solution)

print("Best objective value:", best_value)


Comments

Popular Post

PARTICLE SWARM OPTIMIZATION ALGORITHM NUMERICAL EXAMPLE

Cuckoo Search Algorithm for Optimization Problems

Particle Swarm Optimization (PSO)

PSO (Particle Swarm Optimization) Example Step-by-Step

how is the LBP |Local Binary Pattern| values calculated? Step-by-Step with Example

PSO Python Code || Particle Swarm Optimization in Python || ~xRay Pixy

Grey Wolf Optimization Algorithm

Bat algorithm Explanation Step by Step with example

Grey Wolf Optimization Algorithm Numerical Example

Whale Optimization Algorithm Code Implementation || WOA CODE || ~xRay Pixy