New Post

Markov Chains || Step-By-Step || ~xRay Pixy

Image
Learn Markov Chains step-by-step using real-life examples. Video Chapters: Markov Chains 00:00 Introduction 00:19 Topics Covered 01:49 Markov Chains Applications 02:04 Markov Property 03:18 Example 1 03:54 States, State Space, Transition Probabilities 06:17 Transition Matrix 08:17 Example 02 09:17 Example 03 10:26 Example 04 12:25 Example 05 14:16 Example 06 16:49 Example 07 18:11 Example 08 24:56 Conclusion

BAT ALGORITHM || PYTHON CODE || ~xRay Pixy


Learn Bat Algorithm Implementation in Python. Video Chapters: Bat Algorithm 00:00 Introduction 00:42 Bat Algorithm Key Concepts 01:58 Bat Algorithm Pseudocode 02:35 Objective Function 02:49 Parameters 03:09 Python Code 06:30 BA Main Loop Start 12:30 Result

The Bat Algorithm is a nature-inspired optimization algorithm developed by Xin-She Yang in 2010. It is based on the echolocation behavior of bats. Bats use echolocation to detect prey, avoid obstacles, and navigate in the dark. The algorithm simulates this behavior to find optimal solutions in complex optimization problems.

Applications:

The Bat Algorithm has been used in various fields, including engineering design, image processing, data mining, and robotics, for solving complex optimization problems.


PYTHON CODE:

import numpy as np

# Define the objective function 

def objective_function(x):

    return np.sum(x**2)

# Initialize the bat population

def initialize_bats(n_bats, dim, lower_bound, upper_bound, f_min, f_max, A0, r0):

    bats = np.random.uniform(lower_bound, upper_bound, (n_bats, dim))

    velocities = np.zeros((n_bats, dim))

    frequencies = np.random.uniform(f_min, f_max, n_bats)  # Initialize frequencies

    pulse_rates = r0 * np.ones(n_bats)  # Initialize pulse rates

    loudness = A0 * np.ones(n_bats)  # Initialize loudness

    return bats, velocities, frequencies, pulse_rates, loudness

# Update position and velocity

def update_position_velocity(bats, velocities, frequencies, best_bat, lower_bound, upper_bound):

    velocities += (bats - best_bat) * frequencies[:, np.newaxis]  # Velocity update

    bats += velocities  # Position update

    # Apply boundaries

    bats = np.clip(bats, lower_bound, upper_bound)

    return bats, velocities

# Local search

def local_search(bat, best_bat, avg_loudness):

    epsilon = np.random.uniform(-1, 1, bat.shape)

    return best_bat + epsilon * avg_loudness

# Bat algorithm main loop start

def bat_algorithm(n_bats, dim, lower_bound, upper_bound, max_iter, f_min=0, f_max=100, alpha=0.9, gamma=0.9, A0=1, r0=0.5):

    # Initialize bats

    bats, velocities, frequencies, pulse_rates, loudness = initialize_bats(n_bats, dim, lower_bound, upper_bound, f_min, f_max, A0, r0)

    fitness = np.array([objective_function(bat) for bat in bats])

    best_bat = bats[np.argmin(fitness)]

    best_fitness = np.min(fitness)

    for t in range(max_iter):

        for i in range(n_bats):

            # Generate new solutions

            bats, velocities = update_position_velocity(bats, velocities, frequencies, best_bat, lower_bound, upper_bound)

            if np.random.rand() > pulse_rates[i]:

                # Perform a local search

                avg_loudness = np.mean(loudness)

                new_bat = local_search(bats[i], best_bat, avg_loudness)

            else:

                new_bat = bats[i]

            new_fitness = objective_function(new_bat)

            if np.random.rand() < loudness[i] and new_fitness < fitness[i]:

                # Accept the new solution

                bats[i] = new_bat

                fitness[i] = new_fitness

                loudness[i] *= alpha  # Update loudness using At+1 = α * At

                pulse_rates[i] = r0 * (1 - np.exp(-gamma * t))  # Update pulse rate using rt+1 = r0 * (1 - exp(-γ * t))

            if new_fitness < best_fitness:

                best_bat = new_bat

                best_fitness = new_fitness

    return best_bat, best_fitness

# Parameters

n_bats = 20

dim = 5

lower_bound = -10

upper_bound = 10

max_iter = 1000

best_solution, best_value = bat_algorithm(n_bats, dim, lower_bound, upper_bound, max_iter)

print("Best solution found:", best_solution)

print("Best objective value:", best_value)


Comments

Popular Post

PARTICLE SWARM OPTIMIZATION ALGORITHM NUMERICAL EXAMPLE

Cuckoo Search Algorithm for Optimization Problems

Particle Swarm Optimization (PSO)

PSO (Particle Swarm Optimization) Example Step-by-Step

how is the LBP |Local Binary Pattern| values calculated? Step-by-Step with Example

PSO Python Code || Particle Swarm Optimization in Python || ~xRay Pixy

Grey Wolf Optimization Algorithm

Bat algorithm Explanation Step by Step with example

Grey Wolf Optimization Algorithm Numerical Example

Whale Optimization Algorithm Code Implementation || WOA CODE || ~xRay Pixy