New Post
BAT ALGORITHM || PYTHON CODE || ~xRay Pixy
- Get link
- Other Apps
Applications:
The Bat Algorithm has been used in various fields, including engineering design, image processing, data mining, and robotics, for solving complex optimization problems.
PYTHON CODE:
import numpy as np
# Define the objective function
def objective_function(x):
return np.sum(x**2)
# Initialize the bat population
def initialize_bats(n_bats, dim, lower_bound, upper_bound, f_min, f_max, A0, r0):
bats = np.random.uniform(lower_bound, upper_bound, (n_bats, dim))
velocities = np.zeros((n_bats, dim))
frequencies = np.random.uniform(f_min, f_max, n_bats) # Initialize frequencies
pulse_rates = r0 * np.ones(n_bats) # Initialize pulse rates
loudness = A0 * np.ones(n_bats) # Initialize loudness
return bats, velocities, frequencies, pulse_rates, loudness
# Update position and velocity
def update_position_velocity(bats, velocities, frequencies, best_bat, lower_bound, upper_bound):
velocities += (bats - best_bat) * frequencies[:, np.newaxis] # Velocity update
bats += velocities # Position update
# Apply boundaries
bats = np.clip(bats, lower_bound, upper_bound)
return bats, velocities
# Local search
def local_search(bat, best_bat, avg_loudness):
epsilon = np.random.uniform(-1, 1, bat.shape)
return best_bat + epsilon * avg_loudness
# Bat algorithm main loop start
def bat_algorithm(n_bats, dim, lower_bound, upper_bound, max_iter, f_min=0, f_max=100, alpha=0.9, gamma=0.9, A0=1, r0=0.5):
# Initialize bats
bats, velocities, frequencies, pulse_rates, loudness = initialize_bats(n_bats, dim, lower_bound, upper_bound, f_min, f_max, A0, r0)
fitness = np.array([objective_function(bat) for bat in bats])
best_bat = bats[np.argmin(fitness)]
best_fitness = np.min(fitness)
for t in range(max_iter):
for i in range(n_bats):
# Generate new solutions
bats, velocities = update_position_velocity(bats, velocities, frequencies, best_bat, lower_bound, upper_bound)
if np.random.rand() > pulse_rates[i]:
# Perform a local search
avg_loudness = np.mean(loudness)
new_bat = local_search(bats[i], best_bat, avg_loudness)
else:
new_bat = bats[i]
new_fitness = objective_function(new_bat)
if np.random.rand() < loudness[i] and new_fitness < fitness[i]:
# Accept the new solution
bats[i] = new_bat
fitness[i] = new_fitness
loudness[i] *= alpha # Update loudness using At+1 = α * At
pulse_rates[i] = r0 * (1 - np.exp(-gamma * t)) # Update pulse rate using rt+1 = r0 * (1 - exp(-γ * t))
if new_fitness < best_fitness:
best_bat = new_bat
best_fitness = new_fitness
return best_bat, best_fitness
# Parameters
n_bats = 20
dim = 5
lower_bound = -10
upper_bound = 10
max_iter = 1000
best_solution, best_value = bat_algorithm(n_bats, dim, lower_bound, upper_bound, max_iter)
print("Best solution found:", best_solution)
print("Best objective value:", best_value)
- Get link
- Other Apps
Comments
Post a Comment