Posts

New Post

GWO In Hindi || Step-By-Step|| ~xRay Pixy

Image
Learn Grey Wolf Optimizer Step-by-Step using examples in Hindi. Video Chapters: Grey Wolf Optimizer 00:00 Introduction 00:47 Topics Covered 01:28 Grey Wolf Real-life Behavior 04:35 GWO Simulation 09:36 GWO Step-By-Step 16:50  GWO Applications 17:07 GWO Advantages 17:22 GWO Disadvantages 17:29 Conclusion Grey wolves, in the wild, have a natural ability to locate prey and encircle it during a hunt. This process is led by the alpha wolf , with occasional help from the beta and delta wolves . The remaining wolves (omegas) follow the leaders' guidance. In optimization problems, however, the location of the optimal solution (the "prey") is unknown. To mimic this behavior in the Grey Wolf Optimizer (GWO), we make some assumptions: Alpha, beta, and delta are considered the top three best solutions found so far. These three "leader wolves" guide the movement of all other solutions (search agents or omegas). Grey Wolf Optimizer (GWO) is directly inspired by the social ...

JavaScript Dynamic Barcode Generator || Step-By-Step || ~xRay Pixy

Image
SOURCE CODE <html> <head> <title>Dynamic Barcode Generator</title> <link rel="stylesheet" href="bar.css"/>  <script src="https://cdn.jsdelivr.net/npm/jsbarcode@3.11.3/dist/JsBarcode.all.min.js"></script> </head> <body> <center> <h1>Dynamic Barcode Generator</h1> <div id="box">   <input id="barcode-input" type ="text" placeholder="Enter Text for Barcode"/>   <button onclick="BarCodeGenerate()" >Generate Barcode</button> <br><br>   <svg id ="barcode"></svg> </div>   <script>      function BarCodeGenerate(){          var text = document.getElementById("barcode-input").value;          JsBarcode("#barcode",text);      }             </script> </center> </body> </html>

JavaScript Analog Clock || Step-By-Step || ~xRay Pixy

Image
---------------------------- clock.html --------------------------------------- <html> <head> <title>Javascript Analog Clock</title> <link rel ="stylesheet" href="clock.css"> <script src = "clock.js"></script> </head> <body> <div id="clockBox">      <div id="hour"></div>      <div id="minute"></div>      <div id="second"></div>      <div id="point"></div> </div> </body> </html> ------------------------------ clock.css ----------------------------------------- #clockbox{           height: 650px;           width: 650px;           background: url(clc.png);           background-size:100%;           margin:auto;         } #hour, #minute, #second{      ...

Hunger Games Search Algorithm || Step-By-Step || ~xRay Pixy

Image
Learn Hunger Games Search (HGS) Optimization Algorithm Step-By-Step Hunger Games Search Algorithm Video Chapters: 00:00 Introduction 00:30 About Hunger Games Search Algorithm 06:00 Algorithm Steps 16:00 Conclusion

JavaScript Calculator Step-By-Step ~xRay Pixy

Image
HTML + JAVASCRIPT CODE <html> <head> <title>JavaScript Calculator</title> <link rel="stylesheet" href="calc.css"/> </head> <body> <div class="front"> <form name="form"> <input id="clac" type="text" name="result"><br><br> <input type= "button" value ="1" onclick="form.result.value += '1'"> <input type= "button" value ="2" onclick="form.result.value += '2'"> <input type= "button" value ="3" onclick="form.result.value += '3'"> <input type= "button" value ="+" onclick="form.result.value += '+'"> <br><br> <input type="button" value="4" onclick="form.result.value += '4'"> <input type="button" value="5"...

Dwarf Mongoose Optimization Algorithm || Step-By-Step || ~xRay Pixy

Image
Video Chapters: Dwarf Mongoose Optimization Algorithm 00:00 Introduction 02:10 About Mongoose 03:55 Mongoose Communication 05:00 Mongoose Lifestyle 07:23 Dwarf Mongoose Optimization Algorithm Steps 11:29 Optimization Process Start 16:00 Conclusion New Metaheuristic Optimization Algorithm Dwarf Mongoose Optimization We can use this algorithm to solve different optimization problems as when this algorithm is tested on different continuous, discrete optimization problems it provides efficient results. So, we can use this algorithm to solve complex optimization problems This algorithm is basically inspired by the foraging behavior of mongooses in real life. Dwarf Mongoose Optimizer is introduced in 2022 by Jeffrey and all. It is a swarm intelligence-based optimization algorithm that we can use to solve complex optimization problems. This algorithm provides efficient results in comparison with seven different algorithms as you can see here Particle Swarm Optimizer, Gray wolf O...

Optimization Problems || PART 02 || Design Variables, Constraints, Objec...

Image
Learn how to solve Optimization problems Step-By-Step. Video Chapters: Optimization Problems PART - 02 00:00 Introduction 00:16 Optimization Problems 01:51 Design Variables 02:34 Constraints 03:13 Objective Function 04:57 Conclusion

Fireworks Algorithm For Optimization || Step-By-Step || ~xRay Pixy

Image
Fireworks Algorithm For Optimization Video Link Learn Fireworks Algorithm For Optimization || Step-By-Step || Video Chapters: Firework Algorithm For Optimization 00:00 Introduction 00:55 About Fireworks 04:07 Fireworks Algorithm Steps 05:41 Set Off Fireworks 08:11 Calculate the Total Number of Spark 10:02 Sparks Location Calculation 14:00 conclusion Firework Algorithm For Optimization Key Points It is a Swarm intelligence Based Metaheuristic Algorithm. We can use Fireworks Algorithm to solve complex optimization problems in real life. The Fireworks Algorithm is basically inspired by the explosion process of Fireworks in real life. Fireworks Algorithm mimics this Fireworks explosion behavior to find out the optimal solution. The fireworks algorithm simulates a simple process. 1. Initialize the population for (N) fireworks. 2. Evaluate fireworks performance using an objective function. 3. Set Off N fireworks. 4. Calculate the number of sparks each firework yield and the...

Hybrid Metaheuristic || GA-PSO || Step-By-Step ~xRay Pixy

Image
Hybrid Metaheuristic  Learn Hybrid Metahuristic Step-By-Step (Genetic Algorithm (GA) and Particle Swarm Optimization(PSO)) Hybridization. Hybrid Metahuristic Video Chapters: 00:00 Introduction 00:30 Optimization Problems 02:50 Optimization Process 04:28 Metaheuristic Hybridization 08:56 GA-PSO Hybridization 13:44 Conclusion

Honey Badger Algorithm (HBA) ||Step-By-Step|| ~xRay Pixy

Image
Learn Honey Badger Optimization Algorithm Step-By-Step with Examples. Honey Badger Algorithm Video Chapters: 00:00 Introduction 01:00 About Honey Badger 03:33 Honey Badger Algorithm 07:21 Honey Badger during Digging Mode 10:05 Honey Badger during Honey Mode 12:43 Conclusion

POA - CODE || Pelican Optimization Algorithm Code Implementation ||

Image
Learn Pelican Optimization Algorithm Code Implementation Step-By-Step POA-CODE Video Chapters: 00:00 Introduction 01:22 Test Function Information Program File 02:37 Pelican Optimization Algorithm Program File 11:23 Main Program File 12:30 Conclusion 1.) Test Function Information File function [LB,UB,D,FitF] = test_fun_info(C) switch C case 'F1' FitF = @F1; LB=-100; UB =100; D =30; case 'F2' FitF = @F2; LB=-10; UB =10; D =30; case 'F3' FitF = @F3; LB=0; UB=1; D=3; end end % F1 function R = F1(x) R=sum(x.^2); end % F2 function R = F2(x) R=sum(abs(x))+prod(abs(x)); end 2.) POA File function[Best_Solution,Best_Location,Sol_con_Curve]=POA(PopSize,MaxT,LB,UB,D,FitF) LB=ones(1,D).*(LB); % Lower limit UB=ones(1,D).*(UB); % Upper limit % POPULATION INITIALIZATION PHASE for i=1:D X(:,i) = LB(i)+rand(PopSize,1).*(UB(i) ...

Pelican Optimization Algorithm || Step-By-Step || with Example ~xRay Pixy

Image
Learn Pelican Optimization Algorithm Step-By-Step with Examples. Video Chapters: Introduction: 00:00 Pelicans Behaviors: 00:34 Pelicans Hunting Behavior: 01:47 Pelican Optimization Algorithm: 03:18 Pelican Optimization Algorithm Steps: 06:36 Conclusion: 12:35

Whale Optimization Algorithm Code Implementation || WOA CODE || ~xRay Pixy

Image
Whale Optimization Algorithm Code Implementation Whale Optimization Algorithm Code Files function obj_fun(test_fun) switch test_fun     case 'F1'         x = -100:2:100; y=x;     case 'F2'         x = -10:2:10; y=x; end end function [LB,UB,D,FitFun]=test_fun_info(C) switch C     case 'F1'         FitFun = @F1;         LB = -100;          UB = 100;         D = 30;     case 'F2'         FitFun = @F2;         LB = -10;         UB = 10;         D = 30; end % F1 Test Function     function r = F1(x)         r = sum(x.^2);     end % F2 Test Function     function r = F2(x)         r = sum(abs(x))+prod(abs(x));     end end function Position = initialize(Pop_Size,D,UB,LB) SS_Bo...

Improved Grasshopper Optimization Algorithm || STEP-BY-STEP || ~xRay Pixy

Image
Improved Grasshopper Optimization Algorithm Learn Improved Grasshopper Optimization Algorithm Step-By-Step. Video Chapters: Introduction: 00:00 Improved Grasshopper Optimization Algorithm: 00:53 Grasshopper Optimization Algorithm: 03:18 GOA Mathematical Models: 07:07 IGOA Mathematical Models: 08:25 Conclusion: 09:44

Feature Selection using Artificial Hummingbird Algorithm || Step-By-Step ||

Image
Feature Selection using Artificial Hummingbird Algorithm Learn Feature Selection using Artificial Hummingbird Algorithm Step-By-Step with Examples. Video Chapters: Introduction: 00:00 Feature Selection: 01:00 Feature Selection Problem: 02:55 Feature Selection Process: 03:52 Feature Engineering: 05:18 Feature Selection Techniques: 06:42 Feature Extraction: 07:22 Feature Selection Application: 08:15 Feature Selection using Artificial Hummingbird Algorithm: 08:33 Conclusion: 10:34 Artificial Hummingbird Algorithm: 11:00

Artificial Hummingbird Algorithm || Step-By-Step || ~xRay Pixy

Image
Learn Artificial Hummingbird Algorithm Introduction: 00:00 Artificial Hummingbird Algorithm Main Component 03:16 Artificial Hummingbird Algorithm Steps: 06:50 Hummingbirds Flisht Skills: 08:55 Hummingbirds Foraging Strategies: 10:18 Artificial Hummingbird Algorithm Flowchart: 13:30 Conclusion: 16:05
More posts