Posts

New Post

Intelligent Traffic Management Using || AI & Metaheuristics || ~xRay Pixy

Image
Hybrid Artificial Intelligence and Metaheuristics for Smart City TRafci Management Problem Video Chapters: 00:00 Introduction 00:40 Smart Cities 01:14 Traditional Methods for Traffic Management 02:12 Hybrid Approach AI and Metaheuristics 02:47 STEPS for Hybrid  Traffic Management System 08:40 Advantages of Smart Traffic Management System 09:33 Conclusion

TURTLE GRAPHICS USING PYTHON || Turtle Star || 08 || ~xRay Pixy

Image
TURTLE GRAPHICS USING PYTHON || Turtle Star || 08 ||  STEPS Python Turtle Graphics Design First Import Turtle Here, variable r is considered a Turtle. Set Turtle Speed. Set Line Width. Set Background Color as while.  Select Colors for the Design. Create a List of Colors. For Loop Initialization. Access Colors from the List inside Loop. Set Direction for Turtle. SOURCE CODE import turtle r = turtle.Turtle() r = turtle.Pen() r.speed(1000) r.width(2) turtle.bgcolor('white') c = ['blue','lime','red','black','gold','aqua','purple','silver'] for x in range (600):     r.pencolor(c[x%8])     r.forward(x)     r.right(160) r.done() OUTPUT

Python Turtle Graphics || STAR SPIRAL DESIGN 0 7|| ~xRay Pixy

Image
SOURCE CODE import turtle r = turtle.Turtle() r = turtle.Pen() r.width(4) r.speed(50) turtle.bgcolor('black') c = ['white','red','blue','orange'] for i in range (700):     r.pencolor(c[i%4])     r.left(i)     r.right(100) r.done()

Python Turtle Graphics || Flower Design 0 6|| ~xRay Pixy

Image
Python Turtle Graphics || Flower Design 0 6|| SOURCE CODE from turtle import Turtle r = Turtle() r.screen.bgcolor('black') color = ['red','lime','yellow'] r.screen.tracer(0,0) for x in range(150):     r.circle(x)     r.color(color[x%3])     r.left(60) r.screen.exitonclick() r.screen.mainloop() OUTPUT

Python Turtle Graphics || SPIRAL Design 05 || ~xRay Pixy

Image
Python Turtle Graphics || SPIRAL Design 05 ||  SOURCE CODE import turtle r = turtle.Turtle() s = turtle.Screen() s.bgcolor('white') r.width(2) r.speed(20) color = ('lime','aqua','red','indigo') for i in range (300):     r.pencolor(color[i%3])     r.forward(i*4)     r.right(121) OUTPUT

TURTLE GRAPHICS USING PYTHON || Turtle Star || 04 || ~xRay Pixy

Image
PYTHON TURTLE GRAPHICS || Turtle Star || SOURCE CODE from turtle import * color('blue','yellow') begin_fill() while True:     forward(300)     left(170)     if abs(pos())<1:         break end_fill() OUTPUT

TURTLE GRAPHICS USING PYTHON || CIRCLE PATTERN || ~xRay Pixy

Image
TURTLE GRAPHICS USING PYTHON SOURCE CODE import turtle as r r.title('CIRCLE PATTERN') r.speed(20) r.bgcolor('white') r.shape('circle') r.color('red') for i in range (0,360,10):     r.seth(i)     r.circle(125) r.done() OUTPUT

PYTHON TURTLE GRAPHICS DESIGNS || Geometric Art || ~xRay Pixy

Image
PYTHON TURTLE GRAPHICS DESIGNS SOURCE CODE FOR SPIRAL HEXAGON import turtle colors = ['red','yellow','blue','green','white','orange','silver','pink'] s = turtle.Pen() turtle.bgcolor('black') for i in range (250):     s.pencolor(colors [i % 6])     s.width(i/100 +1)     s.forward(i)     s.left(50) OUTPUT

Python Turtles Graphics | Source Code | ~xRay Pixy

Image
Python Turtles Graphics || Source Code || PYTHON TURTLE SOURCE CODE import turtle c = turtle.Turtle() c.color("blue") c.pensize(10) c.shape("turtle") c.backward(150) c.left(90) c.forward(150) c.right(90) c.forward(150) c.left(45) c.forward(40) c.right(67) c.backward(50) c.left(250) c.backward(60) c.left(180) c.forward(50) c.right(90) c.forward(100) c.down() c.forward(150) c.left(60) c.down() c.forward(40) c.down() c.right(60) c.forward(100) c.left(230) c.forward(200) c.up() c.right(52) c.forward(50) c.backward(200) c.left(20) c.forward(100) turtle.done()

Python For Beginners - Python Basics

Image
PYTHON FOR BEGINNERS # Variables: Used to hold Values x = 200 y = 2 z = x+y print(z) OUTPUT: 202 # Careating Strings in Python r = 'Create stings' print(r) d = 'Don\'t Give Up' print(d) OUTPUT   Create stings Don't Give Up #Hold Values in Strings val = 50 disp = 'My Value is %s' print(disp % val) OUTPUT:  My Value is 50 #placeholder different variables - replace stings msg = '%s: Python is good' msg2 = '%s: Yes' c1 = 'Roy' c2 = 'Jhon' print(msg % c1) print(msg2 % c2) OUTPUT   Roy: Python is good Jhon: Yes #Hold Multiple Values  Hold= 'Add %s and %s' num1 = 23 num2 = 65 print(Hold % (num1,num2)) OUTPUT:   Add 23 and 65 #String Multiplication print(3 * 'R') OUTPUT:  RRR #How to use Space/Tab Space = ' ' * 10 print('%s Hello' % Space) print() print('%s Life = Peace' % Space) OUTPUT  :             Hello            Life = Peace #Create a String List and access Values from it. SimpleList

Archimedes Optimization Algorithm Step-by-Step ~xRay Pixy

Image
ARCHIMEDES OPTIMIZATION ALGORITHM VIDEO LINK: CLICK HERE... VIDEO CHAPTERS Introduction: 00:00 Archimedes Principle: 01:19 Archimedes Optimization Algorithm Idea: 07:07 Archimedes Optimization Algorithm Steps: 08:08 Archimedes Optimization Algorithm Mathematical Models: 11:32 Conclusion: 20 :12 Learn Archimedes Optimization Algorithm Step-by-Step with Example. Archimedes Optimization Algorithm Inspiration: Popular Physics Law (Archimedes Principle). - Used to Solve Complex Numerical Optimization Problems. - Used to solve Engineering Design Optimization Problems. Archimedes Principle : According to Archimedes Principle when a body is immersed wholly or partially in a fluid it loses its weight which is equal to the weight of the liquid displaced by the body. KEY TERMS Fluid: The Substance that flows under the action of applied forces. The fluid does not have its own shape. Pressure: It is a normal force acting on a unit surface area of the liquid. It is Force / Area. Density: Mas

Artificial Ecosystem Based Optimization Algorithm Step-by-Step ~xRay Pixy

Image
Artificial Ecosystem Based Optimization Algorithm Video Link :  https://youtu.be/rbaxNqu7bdM Learn Artificial Ecosystem-based Optimization (AEO) Algorithm Step-by-Step with Example. - Algorithm Type: Nature Inspired Population-Based Metaheuristic Optimization - Used to solve Optimization Problems, Real life Engineering Design Optimization Problems - Provide best results when tested on different benchmark functions. - Outperforms other metaheuristics performance. Video Chapters: Introduction: 00:00 Algorithm Introduction: 01:06 The Ecosystem on Earth: 02:01 Food Chain: 06:28 Artificial Ecosystem-based Optimization Algorithm: 08:27 Artificial Ecosystem-based Optimization Algorithm Steps: 10:41 Mathematical Models: 12:12 Decomposition Process: 19:15 Conclusion: 22:29 An ecosystem is also known as Ecological System. Ecosystem components are Abiotic and Biotic. Abiotic components are non-living parts of the Ecosystem like Rock, water, air, etc. Biotic components are living parts of

Horse Herd Optimization Algorithm | Step-By-Step | ~xRay Pixy

Image
Horse Herd Optimization Algorithm Learn the Horse herd optimization Algorithm (HOA) Step-by-Step. - Nature Inspired Metaheuristic Optimization Algorithm - Inspired by Horse Herd Behavior. - A large number of Controlling Parameters are Used. - Used to Solve Higher Dimensional Optimization Problems in real life. Video Chapters: Introduction: 00:00 Horse Herd Optimization Algorithm: 00:39 Horse Age Classification: 02:31 Horse Behavior: 04:28 Horse Position Update: 06:21 Horse Velocity Vectors: 08:26 Horse Grazing Vector: 09:28 Horse Hierarchy Vector: 10:38 Horse Sociability Vector: 11:45 Horse Imitation Vector: 12:30 Horse Defense Meachnism: 13:05 Horse Herd Optimization Algorithm Step: 15:06 Horse Velocity Vectors: 15:23 Horse Herd Optimization Algorithm Flowchart: 18:18 Conclusion: 19:00 A horse herd optimization algorithm is introduced in 2021. It is the nature-inspired population-based metaheuristic optimization algorithm that is basically inspired by the horse herdin

Fitness Values Calculation in Metaheuristics | Krill Herd Optimizer |

Image
Video Chapters: Krill Herd Optimization Algorithm Introduction: 00:00 KHO Parameters: 00:51 Krill's Position Initialization: 01:51 Objective Function Calculation: 03:52 Conclusion: 05:22 Learn How to Calculate Objective Function values for Metaheuristic Optimization Algorithm. Objective Function is also known as Cost Function, Fitness function, or Evaluation Function. Krill herd Optimization Algorithm Introduction, Numerical Examples: https://www.youtube.com/playlist?list=PLVLAu9B7VtkYR8GkHtTHV83AlR0WjGCfi Initialize the position for search agents randomly in the search space using this equation: Agent's Position in the Search Space : Using any Objective Function to calculate fitness values for each agent: Sphere Function is used here Fitness Values for each agent: Fitness(1) = 4.11424
More posts