New Post

Poplar Optimization Algorithm || Step-By-Step || ~xRay Pixy

Image
The Poplar Optimization Algorithm (POA) is a nature-inspired optimization method based on how poplar trees reproduce. It uses sexual propagation (seed dispersal by wind) for exploration and asexual reproduction (cutting and regrowth) for exploitation. Mutation and chaos factors help maintain diversity and prevent premature convergence, making POA efficient for solving complex optimization problems. Learn the Poplar Optimization Algorithm Step-By-Step using Examples. Video Chapters: Poplar Optimization Algorithm (POA) 00:00 Introduction 02:12 POA Applications 03:32 POA Steps 05:50 Execute Algorithm 1 13:45 Execute Algorithm 2 16:38 Execute Algorithm 3 18:15 Conclusion Main Points of the Poplar Optimization Algorithm (POA) Nature-Inspired Algorithm ā€“ Based on the reproductive mechanisms of poplar trees. Two Key Processes : Sexual Propagation (Seed Dispersal) ā€“ Uses wind to spread seeds, allowing broad exploration. Asexual Reproduction (Cuttings) ā€“ Strong branches grow ...

Find Maxima of Function using PSO Method || Numerical Example || ~xRay Pixy

Find the maximum value for the objective function using Particle Swarm Optimization Step-By-Step.
Video Chapters: Find the Maxima of Function using the PSO Method
00:00 Introduction
02:18 Objective
03:17 Maximization Problem
04:22 Particle Swarm Optimization Steps
05:22 Step 1 - Objective Function
05:30 Step 2 - Position and Velocity Initialization
06:00 Step 3 - Fitness Calculation
07:06 Step 4 - Update Personal Best
07:16 Step 5 - Update Global Best
07:42 Step 6 - Position Update
10:34 Step 7 - Solution Boundary Checking
10:53 Step 8 - New Solution Evaluation
11:31 Step 9 - Update Personal Best
12:12 Step 10 - Update Global Best
13:24 Iteration 2 Start - Position Update
14:45 New Solution Boundary Checking
15:24 New Solution Fitness Calculation
15:48 Update Personal Best
16:32 Update Global Best
17:42 Conclusion

Problem: Find the Maxima of the function

ļæ½(ļæ½)=ļæ½2+2ļæ½+11ļæ½(ļæ½)=ļæ½2+2ļæ½+11f(x)=x

in the range -2<=x<=2 using PSO method. Use 4 particles (N = 4) with the initial

Calculation for Iteration 01

Step 1: Define Objective Function
ļæ½(ļæ½)=ļæ½2+2ļæ½+11

Step 2: Initialize Position and Velocity for Each Particle (N = 1,2,3,4)

Initial Positions: x1 = -1.5, x2 = 0.0, x3 = 0.5, x4 = 1.25
Initial Velocities: v1 = v2 = v3 = v4 = 0
Weight Inertia (w) = 0.8
Acceleration Coefficients c1 = c2 = 2.05

Step 3: Evaluate Performance using Objective Function

f(x1) = -(-1.5)^2 + 2 (-1.5) + 11 = 5.75

f(x2) = -(0.0)^2 + 2(0.0) + 11 = 11

f(x3) = -(0.5)^2 + 2(0.5) + 11 = 11.75

f(x4) = -(1.25) ^2 + 2(1.25) + 11 = 11.93

Step 4: Update Personal Best Positions

Pbest(x1) = -1.5

Pbest(x2) = 0.0

Pbest(x3) = 0.5

Pbest(x4) = 1.25

Step 5: Update Global Best Position
Gbest = (x4) = 1.25

Step 6: Update the Velocity and Position for each Particle

Particle (x1) New Velocity

v1 = 0.8 * 0 + 0.3 * 2.05 * (-1.5 - (-1.5)) + 0.6 (2.05)*(1.25-(-1.5))

v1 = 3.3825

Particle (x1) New Position

x(1) = -1.5 + 3.3825= 1.88

Particle (x2) New Velocity

v2 = 0.8 * 0 + 0.2 * 2.05 * (0.0 - 0.0) + 0.6 * (2.05)*(1.25-0.0)

v2 = 1.537

Particle (x2) New Position

x(2) = 0.0 + 1.537  = 1.537

Particle (x3) New Velocity

v3 = 0.8 * 0 + 0.4 * 2.05 * (0.5 - 0.5) + 0.1 * (2.05)*(1.25-0.5))

v3 = 0.1537

Particle (x3) New Position

x(3) = 0.5 + 0.1537 = 0.6537

Particle (x4) New Velocity

v4 = 0.8 * 0 + 0.9 * 2.05 * (1.25 - 1.25) + 0.2 * (2.05)*(1.25-1.25))

v4 = 0

Particle (x4) New Position

x(4) = 1.25 - 0  = 1.25

Step 07: Ensure New Solutions are within range

Step 08: Evaluate New Solution Performance using Objective Function

f(x1) = -(1.88)^2 + 2 (1.88) + 11 = 11.23

f(x2) = -(1.53)^2 + 2(1.53) + 11 = 11.72

f(x3) = -(0.65)^2 + 2(0.65) + 11 = 11.87

f(x4) = -(1.25) ^2 + 2(1.25) + 11 = 11.9

Step 09: Update Personal Best Positions

Pbest(x1) = 1.88

Pbest(x2) = 1.53

Pbest(x3) = 0.65

Pbest(x4) = 1.25

Step 10: Update Global Best Position

Gbest = (x4) = 1.25        Check Fitness (Old_Gbest) > Fitness (New_Gbest)

Check (11.93) > (11.23)

            (11.93) > (11.72)

            (11.93) > (11.87)

            (11.93) > (11.93)

Step 11: Update Global Best Position
Gbest = (x4) = 1.25 

Step 12: Check Stopping Condition

Check (Current_itr <= Max_iter)

Repeat Steps from Step 6 to Step 11

For Iteration 01 Gbest Position = (x4) = 1.25  and Fitness = 11.93

Comments

Popular Post

PARTICLE SWARM OPTIMIZATION ALGORITHM NUMERICAL EXAMPLE

Cuckoo Search Algorithm for Optimization Problems

Particle Swarm Optimization (PSO)

PSO (Particle Swarm Optimization) Example Step-by-Step

PSO Python Code || Particle Swarm Optimization in Python || ~xRay Pixy

how is the LBP |Local Binary Pattern| values calculated? Step-by-Step with Example

Whale Optimization Algorithm Code Implementation || WOA CODE || ~xRay Pixy

Grey Wolf Optimization Algorithm

Grey Wolf Optimization Algorithm Numerical Example

Bat algorithm Explanation Step by Step with example