New Post

Nash Equilibrium In Game Theory ~xRay Pixy

Image
 Video Link  CLICK HERE... Learn Nash Equilibrium In Game Theory Step-By-Step Using Examples. Video Chapters: Nash Equilibrium  00:00 Introduction 00:19 Topics Covered 00:33 Nash Equilibrium  01:55 Example 1  02:30 Example 2 04:46 Game Core Elements 06:41 Types of Game Strategies 06:55  Prisoner’s Dilemma  07:17  Prisoner’s Dilemma Example 3 09:16 Dominated Strategy  10:56 Applications 11:34 Conclusion The Nash Equilibrium is a concept in game theory that describes a situation where no player can benefit by changing their strategy while the other players keep their strategies unchanged.  No player can increase their payoff by changing their choice alone while others keep theirs the same. Example : If Chrysler, Ford, and GM each choose their production levels so that no company can make more money by changing their choice, it’s a Nash Equilibrium Prisoner’s Dilemma : Two criminals are arrested and interrogated separately. Each has two ...

WFLO in Python || Optimal Placement of Wind Turbines using PSO in Python...

Wind turbine optimal placement using particle swarm optimization Implementation in Python. Video Chapters: 00:00 Introduction 00:30 Key Points 03:17 Implementation 05:50 Flowchart 06:32 Code 23:47 Apply PSO 31:53 Output

SOURCE CODE

import numpy as np
import math
import random

#Probability Distribution Function
def PDF(U,k,c):
    return (k / c) * (U / c)**(k - 1) * math.exp(-((U / c)**k))

#Calculate Alpha
def Cal_alpha(Z,Z_o):
    return 0.5 / math.log (Z/Z_o)

#Calculate Full Wake Effect
def Full_WE(u_o,a,alpha,X,R_1):
    return u_o*(1-(2*a/(1+alpha*(X/R_1)**2)))

#Calculate Partial Wake Effect
def Partial_WE(u_o,a,alpha,X,R_1,A_Partial,A_Total):
    return u_o * (1-(2*a/(1+alpha*(X/R_1)**2)))*(A_Partial-A_Total)

#Calculate No Wake Effect
def No_WE(u_o):
    return u_o

#Calculate Power
def Power(u,Ideal_Power):
    if u<3:
        return 0
    elif 3<=u<=12:
        return Ideal_Power
    elif 12<=u<=25:
        return 518.4
    else:
        return 0
    
#Calculate Objective Function
def Obj_Fun(installation_cost,Total_Power,U_values,k,c):
    objective_value = [installation_cost / (Total_Power * PDF(U,k,c)) for U in U_values]
    return min(objective_value)

#Apply PSO
#PSO Parameters
Pop_S = 100
MaxT = 500
w = 0.5
c1 = 2.5
c2 = 2.5

#Particle Class
class Particle:
    def __init__ (self):
        self.position = [random.uniform(0.1,1.0),random.uniform(10,50)]
        self.velocity = [0.0,0.0]
        self.pbest = self.position.copy()

#PSO MAIN LOOP
def PSO(config):
    initial_Total_Power = config["Total_Power"]
    U_values = config["U_values"]
    k = config["k"]
    c = config["c"]
    particles = [Particle() for _ in range (Pop_S)]
    gbest = particles[0].pbest.copy()
    best_a = gbest[1]
    best_installation_cost = gbest[0]

    installation_cost = Pop_S*(2/3+(1/3)*math.exp(-0.00174*Pop_S**Pop_S))

    #PSO LOOP
    for iteration in range (MaxT):
        for particle in particles:
            a = particle.position[1]
            Total_Power_Particle = initial_Total_Power
            for U in U_values:
                best_a = particle.position[1]

            #Objective Function
            objective = Obj_Fun(installation_cost,Total_Power_Particle,U_values,k,c)

            #Compare Pbest
            if objective < Obj_Fun(particle.pbest[0],Total_Power_Particle,U_values,k,c):
                particle.pbest = particle.position.copy()

            #Compare Gbest
            if objective < Obj_Fun(gbest[0],Total_Power_Particle,U_values,k,c):
                gbest = particle.position.copy
                best_a = a
                best_installation_cost=installation_cost

            #Calculate Velocity
            for i in range (len(particle.velocity)):
                r1,r2 = random.random(),random.random()
                C_velocity = c1 *r1 *(particle.pbest[i]-particle.position[i])
                S_velocity = c2 *r2 *(gbest[i]-particle.position[i])
                particle.velocity[i] = w * particle.velocity[i]+C_velocity+S_velocity

                #Calculate  Position
                particle.position[i] += particle.velocity[i]
    return best_installation_cost,best_a

def main():
    k = 0.10
    c = 10
    Z = 60
    Z_o = 0.3
    a = 1/3
    u_o = 12
    X = 200
    D = 40
    R_r = 40
    R_1 = a * X * R_r
    alpha = Cal_alpha(Z,Z_o)
    A_Partial = 3.14 * (R_1)**2
    A_single = 3.14 * (D/2)**2
    A_Total = (200*200) * A_single

    #Wind Speed Values
    U_values = [3,6,9,12,15]

    #Ideal Power
    Ideal_Power = 0.3*u_o**3

    partial_wake = Partial_WE(u_o,a,alpha,X,R_1,A_Partial,A_Total)


    #Actual Power
    Actual_Power = 0.3*partial_wake**3

    #Total Power
    Total_Power = Ideal_Power + Actual_Power

    #AEP
    AEP = 8760*Total_Power

    Configuration = {
        "Total_Power":Total_Power,
        "U_values":U_values,
        "k":k,
        "c":c,
        "u_o":u_o,
        "alpha":alpha,
        "X":X,
        "R_1":R_1,
        "A_Partial":A_Partial,
        "A_Total":A_Total
    }

    best_installation_cost,best_a = PSO(Configuration)

    best_objective = Obj_Fun(best_installation_cost,Total_Power,Configuration["U_values"],Configuration["k"],Configuration["c"])

    efficiency = Total_Power / (2 * Ideal_Power)

    #Display Output Values
    print("Objective",best_objective)
    print("Efficiency",efficiency)
    print("Total Power",Total_Power)

if __name__ == "__main__":
    main()

Comments

Popular Post

PARTICLE SWARM OPTIMIZATION ALGORITHM NUMERICAL EXAMPLE

Cuckoo Search Algorithm for Optimization Problems

Particle Swarm Optimization (PSO)

PSO (Particle Swarm Optimization) Example Step-by-Step

how is the LBP |Local Binary Pattern| values calculated? Step-by-Step with Example

PSO Python Code || Particle Swarm Optimization in Python || ~xRay Pixy

Grey Wolf Optimization Algorithm

Bat algorithm Explanation Step by Step with example

Grey Wolf Optimization Algorithm Numerical Example

Whale Optimization Algorithm Code Implementation || WOA CODE || ~xRay Pixy