Posts

Showing posts from August, 2023

New Post

Nash Equilibrium In Game Theory ~xRay Pixy

Image
 Video Link  CLICK HERE... Learn Nash Equilibrium In Game Theory Step-By-Step Using Examples. Video Chapters: Nash Equilibrium  00:00 Introduction 00:19 Topics Covered 00:33 Nash Equilibrium  01:55 Example 1  02:30 Example 2 04:46 Game Core Elements 06:41 Types of Game Strategies 06:55  Prisoner’s Dilemma  07:17  Prisoner’s Dilemma Example 3 09:16 Dominated Strategy  10:56 Applications 11:34 Conclusion The Nash Equilibrium is a concept in game theory that describes a situation where no player can benefit by changing their strategy while the other players keep their strategies unchanged.  No player can increase their payoff by changing their choice alone while others keep theirs the same. Example : If Chrysler, Ford, and GM each choose their production levels so that no company can make more money by changing their choice, it’s a Nash Equilibrium Prisoner’s Dilemma : Two criminals are arrested and interrogated separately. Each has two ...

WFLO in Python || Optimal Placement of Wind Turbines using PSO in Python...

Image
Wind turbine optimal placement using particle swarm optimization Implementation in Python. Video Chapters: 00:00 Introduction 00:30 Key Points 03:17 Implementation 05:50 Flowchart 06:32 Code 23:47 Apply PSO 31:53 Output SOURCE CODE import numpy as np import math import random #Probability Distribution Function def PDF(U,k,c): return (k / c) * (U / c)**(k - 1) * math.exp(-((U / c)**k)) #Calculate Alpha def Cal_alpha(Z,Z_o): return 0.5 / math.log (Z/Z_o) #Calculate Full Wake Effect def Full_WE(u_o,a,alpha,X,R_1): return u_o*(1-(2*a/(1+alpha*(X/R_1)**2))) #Calculate Partial Wake Effect def Partial_WE(u_o,a,alpha,X,R_1,A_Partial,A_Total): return u_o * (1-(2*a/(1+alpha*(X/R_1)**2)))*(A_Partial-A_Total) #Calculate No Wake Effect def No_WE(u_o): return u_o #Calculate Power def Power(u,Ideal_Power): if u<3: return 0 elif 3<=u<=12: return Ideal_Power elif 12<=u<=25: return 518.4 else: return 0 #Calcu...

How to Initialize Population by Good-Point Set in Python ~xRay pixy

Image
How to Initialize Population by Good-Point Set in Python ~xRay pixy

GWO Python Code || Grey Wolf Optimizer in Python || ~xRay Pixy

Image
SOURCE CODE import numpy as np import tkinter as tk import matplotlib.pyplot as plt from tkinter import messagebox def initialization (PopSize,D,LB,UB):     SS_Boundary = len(LB) if isinstance(UB,(list,np.ndarray)) else 1     if SS_Boundary ==1:         Positions = np.random.rand(PopSize,D)*(UB-LB)+LB     else:         Positions = np.zeros((PopSize,D))         for i in range(D):             Positions[:,i]=np.random.rand(PopSize)*(UB[i]-LB[i])+LB[i]     return Positions def GWO(PopSize,MaxT,LB,UB,D,Fobj):     Alpha_Pos = np.zeros(D)     Alpha_Fit = np.inf     Beta_Pos = np.zeros(D)     Beta_Fit = np.inf     Delta_Pos = np.zeros(D)     Delta_Fit = np.inf     Positions = initialization(PopSize,D,UB,LB)     Convergence_curve = np.zeros(MaxT)     l = 0     while l...

Implement TSP in Python ||Travelling Salesman Problem|| ~xRay Pixy

Image
Travelling salesman problem implementation in Python. Video Chapters: 00:00 Introduction 00:34 TSP Code 06:51 Calculate the Total Distance 11:17 Find Out the Optimal Route and Minimum Distance 15:03 Output 16:00 Conclusion
More posts