New Post

Avascular Necrosis (AVN) || Early Detection, Better Outcomes || ~xRay Pixy

Image
Avascular Necrosis (AVN) is a condition where blood flow to the bone is reduced, causing bone cells to die. This leads to pain, joint damage, and difficulty in movement, especially in the hip. Early diagnosis and proper treatment can prevent permanent bone damage and improve quality of life. Video Chapter: AVN 00:00 Introduction 00:45 What is AVN? 01:55 About Bone Tissue 02:49 AVN Causes 03:38 AVN Symptoms 04:11 AVN Diagnosis 04:56 AVN of femoral head 05:33 How AVN Develops 07:28 Conclusions #optimization #algorithm #metaheuristic #robotics #deeplearning #ArtificialIntelligence #MachineLearning #computervision #research #projects #thesis #Python #optimizationproblem #optimizationalgorithms 

Particle Swarm Optimization (PSO) |Part - 2| with Numerical Example and ...

Particle Swarm Optimization (PSO) Algorithm


Particle Swarm Optimization (PSO) Algorithm step-by-step explanation with Numerical Example and source code implementation. 🌞 Particle Swarm Optimization (PSO) Algorithm Matlab code.
Particle Swarm Optimization Main File: main.m
pso;

Particle Swarm Optimization Function File: Sphere(x)
function F1 = Sphere(x) F1 = sum(x.^2); end

Particle Swarm Optimization File Name Save as: pso.m
clear; close all; %% Fitness Function Calling FitnessFunction=@(x) Sphere(x); % Fitness Function Calling % Total Number of Decision Variables Used nVar=10; % Size of Decision Variables Matrix VarSize=[1 nVar]; % Lower Bound LowerBound =-10; % Upper Bound UpperBound = 10; %% Parameters Initialization Phase % Maximum Number of Iterations used. MaxT=100; % Total Number of Search Agents used. PopulationSize = 10; % Initialize PSO Parameters % Inertia Weight w=1; % Inertia Weight Damping Ratio wdamp=0.99; % Personal Learning Coefficient c1=1.5; % Global Learning Coefficient c2=2.0; % Velocity Limits VelMax=0.1*(UpperBound-LowerBound); VelMin=-VelMax; %% Initialization Position, Cost, Velocity, Best_Position, Best_Cost empty_particle.Position=[]; empty_particle.Cost=[]; empty_particle.Velocity=[]; empty_particle.Best.Position=[]; empty_particle.Best.Cost=[]; particle=repmat(empty_particle,PopulationSize ,1); GlobalBest.Cost=inf; for i=1:PopulationSize % Initialize Position for each search Agent in the search space particle(i).Position=unifrnd(LowerBound,UpperBound,VarSize); % Initialize Velocity for each search Agent in the search space particle(i).Velocity=zeros(VarSize); % Fitness Values Calculation for each search Agent in the search space particle(i).Cost=FitnessFunction(particle(i).Position); % Update Personal Best Position for the particles particle(i).Best.Position=particle(i).Position; particle(i).Best.Cost=particle(i).Cost; % Update Global Best Position for each search Agent in the search space if particle(i).Best.Cost<GlobalBest.Cost GlobalBest=particle(i).Best; end end BestCost=zeros(MaxT,1); %% PSO Main Loop for CurrentIteration=1:MaxT for i=1:PopulationSize % Update Velocity for each search Agent in the search space particle(i).Velocity = w*particle(i).Velocity +c1*rand(VarSize).*(particle(i).Best.Position-particle(i).Position) +c2*rand(VarSize).*(GlobalBest.Position-particle(i).Position); % Apply Velocity Limits particle(i).Velocity = max(particle(i).Velocity,VelMin); particle(i).Velocity = min(particle(i).Velocity,VelMax); % Update Position for Each Particle particle(i).Position = particle(i).Position + particle(i).Velocity; % % Check Boundries [-10, 10] Outside=(particle(i).Position<LowerBound | particle(i).Position>UpperBound); particle(i).Velocity(Outside)=-particle(i).Velocity(Outside); particle(i).Position = max(particle(i).Position,LowerBound); particle(i).Position = min(particle(i).Position,UpperBound); % Fitness Values Calculation particle(i).Cost = FitnessFunction(particle(i).Position); % Update Personal Best if particle(i).Cost<particle(i).Best.Cost particle(i).Best.Position=particle(i).Position; particle(i).Best.Cost=particle(i).Cost; % Update Global Best if particle(i).Best.Cost<GlobalBest.Cost GlobalBest=particle(i).Best; end end end BestCost(CurrentIteration)=GlobalBest.Cost; disp(['Current Iteration Number = ' num2str(CurrentIteration) ': Best Cost Found = ' num2str(BestCost(CurrentIteration))]);

w=w*wdamp; end BestSol = GlobalBest; %% Results figure; %plot(BestCost,'LineWidth',2); semilogy(BestCost,'LineWidth',2); xlabel('Iteration Numbers'); ylabel('Best Cost Found'); grid on;

#Metaheuristic #Algorithms
Meta-heuristic Algorithms
Link - Click Here


Comments

Popular Post

PARTICLE SWARM OPTIMIZATION ALGORITHM NUMERICAL EXAMPLE

Cuckoo Search Algorithm for Optimization Problems

PSO (Particle Swarm Optimization) Example Step-by-Step

Particle Swarm Optimization (PSO)

PSO Python Code || Particle Swarm Optimization in Python || ~xRay Pixy

how is the LBP |Local Binary Pattern| values calculated? Step-by-Step with Example

Whale Optimization Algorithm Code Implementation || WOA CODE || ~xRay Pixy

Grey Wolf Optimization Algorithm

Grey Wolf Optimization Algorithm Numerical Example

GWO Python Code || Grey Wolf Optimizer in Python || ~xRay Pixy