New Post

AI and Deep Learning for Ear Infection Detection ~xRay Pixy

Image
Learn how AI and deep learning revolutionize ear infection detection, enabling accurate, fast, and automated diagnosis using advanced image processing and machine learning techniques. Video Chapters: Ear Infection Detection using AI and DL 00:00 Introduction 00:14 My Experience with Ear Infections 01:15 Topics Covered 02:24 Ear Infections 02:48 Ear Infection Signs 03:55 Ear Infection Preventions 04:29 Ear Infection Types 05:19 Ear Infection Causes 06:14 How Bacteria and Fungus Grow in Ear 07:26 My Mistakes 08:49 Doctors Advise after Ear Infection 09:45 Ear Infection Common Symptoms 10:37 Automated Ear Infection Detection with Deep Learning AI 15:09 Smartphone Otoscopes 16:04 Conclusion Ear fungus, also known as otomycosis , is a fungal infection of the outer ear canal. If an ear infection is not treated on time, it can lead to serious complications.  Hearing Loss – Persistent infections can damage the eardrum and middle ear structures, leading to partial or permanent hearing loss....

Dragonfly Optimization Algorithm Step-by-Step with example

Dragonfly Optimization Algorithm (DOA)

Dragonfly Algorithm is developed by Mirjalili in 2016. Dragonfly Algorithm is a metaheuristic algorithm inspired by the behavior of dragonflies in nature. There are about 5000 known species of dragonflies. Dragonfly is a symbol of Strength, Courage, and Happiness in Japan. 

Dragonfly Algorithm Step-by-Step: -
Step 01: Initialize Dragonfly Population Randomly (𝑋_𝑖, Where i = 1,2,3,4,…n). 
Step 02: Initialize Step vector / Size for dragonfly (〖∆𝑋〗_𝑖).
Step 03: While(CurrentIteration < MaximumIteration)
Step 04: Computer Fitness Values for each dragonfly.
Step 05: Update Food sources and enemy. 
Step 06: Update parameters w, s, a, c, f, and e.
Step 07: Calculate S, A, C, and F.
Step 08: Update neighboring radius. 
Step 09: If the dragonfly has at least one neighboring dragonfly. { 
   Update Velocity and Position;
else { Update Position; }
Elseif { Check and correct new position based on boundaries of variable; }

Note: To Improve randomness, we can update the dragonfly position using random walk (i.e., Levy’s Flight).




Dragonfly Optimization Algorithm on Different Engineering Design Problems

Engineering Design Problem
Engineering design problems include different complicated Cost Function (aka Fitness Function / Objective Functions). Engineering Optimization Techniques Aim is to “Find out Optimum solution from all feasible solutions”.

How Metaheuristic Algorithms Solve Engineering Design Problems?
Metaheuristic algorithms used randomization process. Metaheuristic algorithms are suitable for global optimization. For difficult engineering problems, develop and utilize metaheuristic algorithms (which may obtain good results).

Engineering Design Problems Example
A dragonfly optimization algorithm is applied to different engineering design problems: 
Welded Beam Design Optimization Problem
Speed reducer design optimization problem
Compression spring design optimization problem

Dragonfly Optimization Algorithm on Different Engineering Design Problems ~xRay Pixy

#Metaheuristic #Algorithms
Meta-heuristic Algorithms
Link - Click Here

Comments

Popular Post

PARTICLE SWARM OPTIMIZATION ALGORITHM NUMERICAL EXAMPLE

Cuckoo Search Algorithm for Optimization Problems

Particle Swarm Optimization (PSO)

PSO (Particle Swarm Optimization) Example Step-by-Step

how is the LBP |Local Binary Pattern| values calculated? Step-by-Step with Example

PSO Python Code || Particle Swarm Optimization in Python || ~xRay Pixy

Grey Wolf Optimization Algorithm

Grey Wolf Optimization Algorithm Numerical Example

Whale Optimization Algorithm Code Implementation || WOA CODE || ~xRay Pixy

Bat algorithm Explanation Step by Step with example