New Post

Confusion Matrix with Real-Life Examples || Artificial Intelligence || ~...

Image
Learn about the Confusion Matrix with Real-Life Examples. A confusion matrix is a table that shows how well an AI model makes predictions. It compares the actual results with the predicted ones and tells which are right or wrong. It includes True Positive (TP), False Positive (FP), False Negative (FN), and True Negative (TN). Video Chapters: Confusion Matrix in Artificial Intelligence 00:00 Introduction 00:12 Confusion Matrix 03:48 Metrices Derived from Confusion Matrix 04:26 Confusion Matrix Example 1 05:44 Confusion Matrix Example 2 08:10 Confusion Matrix Real-Life Uses #artificialintelligence #machinelearning #confusionmatrix #algorithm #optimization #research #happylearning #algorithms #meta #optimizationtechniques #swarmintelligence #swarm #artificialintelligence #machinelearning

Dragonfly Optimization Algorithm Step-by-Step with example

Dragonfly Optimization Algorithm (DOA)

Dragonfly Algorithm is developed by Mirjalili in 2016. Dragonfly Algorithm is a metaheuristic algorithm inspired by the behavior of dragonflies in nature. There are about 5000 known species of dragonflies. Dragonfly is a symbol of Strength, Courage, and Happiness in Japan. 

Dragonfly Algorithm Step-by-Step: -
Step 01: Initialize Dragonfly Population Randomly (𝑋_𝑖, Where i = 1,2,3,4,…n). 
Step 02: Initialize Step vector / Size for dragonfly (〖∆𝑋〗_𝑖).
Step 03: While(CurrentIteration < MaximumIteration)
Step 04: Computer Fitness Values for each dragonfly.
Step 05: Update Food sources and enemy. 
Step 06: Update parameters w, s, a, c, f, and e.
Step 07: Calculate S, A, C, and F.
Step 08: Update neighboring radius. 
Step 09: If the dragonfly has at least one neighboring dragonfly. { 
   Update Velocity and Position;
else { Update Position; }
Elseif { Check and correct new position based on boundaries of variable; }

Note: To Improve randomness, we can update the dragonfly position using random walk (i.e., Levy’s Flight).




Dragonfly Optimization Algorithm on Different Engineering Design Problems

Engineering Design Problem
Engineering design problems include different complicated Cost Function (aka Fitness Function / Objective Functions). Engineering Optimization Techniques Aim is to “Find out Optimum solution from all feasible solutions”.

How Metaheuristic Algorithms Solve Engineering Design Problems?
Metaheuristic algorithms used randomization process. Metaheuristic algorithms are suitable for global optimization. For difficult engineering problems, develop and utilize metaheuristic algorithms (which may obtain good results).

Engineering Design Problems Example
A dragonfly optimization algorithm is applied to different engineering design problems: 
Welded Beam Design Optimization Problem
Speed reducer design optimization problem
Compression spring design optimization problem

Dragonfly Optimization Algorithm on Different Engineering Design Problems ~xRay Pixy

#Metaheuristic #Algorithms
Meta-heuristic Algorithms
Link - Click Here

Comments

Popular Post

PARTICLE SWARM OPTIMIZATION ALGORITHM NUMERICAL EXAMPLE

Cuckoo Search Algorithm for Optimization Problems

PSO (Particle Swarm Optimization) Example Step-by-Step

Particle Swarm Optimization (PSO)

how is the LBP |Local Binary Pattern| values calculated? Step-by-Step with Example

PSO Python Code || Particle Swarm Optimization in Python || ~xRay Pixy

Grey Wolf Optimization Algorithm

Bat algorithm Explanation Step by Step with example

Grey Wolf Optimization Algorithm Numerical Example

Whale Optimization Algorithm Code Implementation || WOA CODE || ~xRay Pixy