New Post

Python Code || Path Planning with Grey Wolf Optimization (GWO) ~xRay Pixy

Image
Learn how to implement an obstacle-avoiding path planning for a robot using the Grey Wolf Optimization (GWO) in a static environment. #optimization #algorithm #metaheuristic #robotics #deeplearning #ArtificialIntelligence #MachineLearning #computervision #research #projects #thesis #Python

Crow Search Algorithm (CSA) / Crow Search Optimization (CSO) Algorithm

What is the Crow search algorithm?

Crow search algorithm (CSA) is a population-based algorithm. Crow search algorithm is similar to Particle Swarm Optimization (PSO) algorithm. Crow search algorithm mimics the crow's intellegent behavior. CSA is based on crow's intelligent behavior. 

Key Point About Crow's

Crows live in large families and care for younger ones. They eat insects, worms, nuts, fruits, food, birds, non-insects, etc. They can hide excess food in hiding places and retrieve it when needed. Age: 14-17 years.

Crow can memorize the hiding place positions.

They follow each other to steal their food.

Crows protect their hiding places from attackers.

Two main parameters used in the CSA algorithm:

Flights Length,

Awareness Probability. 

Crow Search Optimization Algorithm Main Concepts 

Crow store excess food in hiding places and retrieve it when needed. 

Crow cheat each other (i.e., they steal each other food).



Crow search algorithm Video Link : Crow search algorithm

Comments

Popular Post

PARTICLE SWARM OPTIMIZATION ALGORITHM NUMERICAL EXAMPLE

Cuckoo Search Algorithm for Optimization Problems

Particle Swarm Optimization (PSO)

PSO (Particle Swarm Optimization) Example Step-by-Step

how is the LBP |Local Binary Pattern| values calculated? Step-by-Step with Example

PSO Python Code || Particle Swarm Optimization in Python || ~xRay Pixy

Bat algorithm Explanation Step by Step with example

Grey Wolf Optimization Algorithm

Grey Wolf Optimization Algorithm Numerical Example

Whale Optimization Algorithm Code Implementation || WOA CODE || ~xRay Pixy