Posts

Showing posts from March, 2023

New Post

Nash Equilibrium In Game Theory ~xRay Pixy

Image
 Video Link  CLICK HERE... Learn Nash Equilibrium In Game Theory Step-By-Step Using Examples. Video Chapters: Nash Equilibrium  00:00 Introduction 00:19 Topics Covered 00:33 Nash Equilibrium  01:55 Example 1  02:30 Example 2 04:46 Game Core Elements 06:41 Types of Game Strategies 06:55  Prisoner’s Dilemma  07:17  Prisoner’s Dilemma Example 3 09:16 Dominated Strategy  10:56 Applications 11:34 Conclusion The Nash Equilibrium is a concept in game theory that describes a situation where no player can benefit by changing their strategy while the other players keep their strategies unchanged.  No player can increase their payoff by changing their choice alone while others keep theirs the same. Example : If Chrysler, Ford, and GM each choose their production levels so that no company can make more money by changing their choice, it’s a Nash Equilibrium Prisoner’s Dilemma : Two criminals are arrested and interrogated separately. Each has two ...

POA - CODE || Pelican Optimization Algorithm Code Implementation ||

Image
Learn Pelican Optimization Algorithm Code Implementation Step-By-Step POA-CODE Video Chapters: 00:00 Introduction 01:22 Test Function Information Program File 02:37 Pelican Optimization Algorithm Program File 11:23 Main Program File 12:30 Conclusion 1.) Test Function Information File function [LB,UB,D,FitF] = test_fun_info(C) switch C case 'F1' FitF = @F1; LB=-100; UB =100; D =30; case 'F2' FitF = @F2; LB=-10; UB =10; D =30; case 'F3' FitF = @F3; LB=0; UB=1; D=3; end end % F1 function R = F1(x) R=sum(x.^2); end % F2 function R = F2(x) R=sum(abs(x))+prod(abs(x)); end 2.) POA File function[Best_Solution,Best_Location,Sol_con_Curve]=POA(PopSize,MaxT,LB,UB,D,FitF) LB=ones(1,D).*(LB); % Lower limit UB=ones(1,D).*(UB); % Upper limit % POPULATION INITIALIZATION PHASE for i=1:D X(:,i) = LB(i)+rand(PopSize,1).*(UB(i) ...

Pelican Optimization Algorithm || Step-By-Step || with Example ~xRay Pixy

Image
Learn Pelican Optimization Algorithm Step-By-Step with Examples. Video Chapters: Introduction: 00:00 Pelicans Behaviors: 00:34 Pelicans Hunting Behavior: 01:47 Pelican Optimization Algorithm: 03:18 Pelican Optimization Algorithm Steps: 06:36 Conclusion: 12:35

Whale Optimization Algorithm Code Implementation || WOA CODE || ~xRay Pixy

Image
Whale Optimization Algorithm Code Implementation Whale Optimization Algorithm Code Files function obj_fun(test_fun) switch test_fun     case 'F1'         x = -100:2:100; y=x;     case 'F2'         x = -10:2:10; y=x; end end function [LB,UB,D,FitFun]=test_fun_info(C) switch C     case 'F1'         FitFun = @F1;         LB = -100;          UB = 100;         D = 30;     case 'F2'         FitFun = @F2;         LB = -10;         UB = 10;         D = 30; end % F1 Test Function     function r = F1(x)         r = sum(x.^2);     end % F2 Test Function     function r = F2(x)         r = sum(abs(x))+prod(abs(x));     end end function Position = initialize(Pop_Size,D,UB,LB) SS_Bo...
More posts