Posts

Showing posts from March, 2023

New Post

Avascular Necrosis (AVN) || Early Detection, Better Outcomes || ~xRay Pixy

Image
Avascular Necrosis (AVN) is a condition where blood flow to the bone is reduced, causing bone cells to die. This leads to pain, joint damage, and difficulty in movement, especially in the hip. Early diagnosis and proper treatment can prevent permanent bone damage and improve quality of life. Video Chapter: AVN 00:00 Introduction 00:45 What is AVN? 01:55 About Bone Tissue 02:49 AVN Causes 03:38 AVN Symptoms 04:11 AVN Diagnosis 04:56 AVN of femoral head 05:33 How AVN Develops 07:28 Conclusions #optimization #algorithm #metaheuristic #robotics #deeplearning #ArtificialIntelligence #MachineLearning #computervision #research #projects #thesis #Python #optimizationproblem #optimizationalgorithms 

POA - CODE || Pelican Optimization Algorithm Code Implementation ||

Image
Learn Pelican Optimization Algorithm Code Implementation Step-By-Step POA-CODE Video Chapters: 00:00 Introduction 01:22 Test Function Information Program File 02:37 Pelican Optimization Algorithm Program File 11:23 Main Program File 12:30 Conclusion 1.) Test Function Information File function [LB,UB,D,FitF] = test_fun_info(C) switch C case 'F1' FitF = @F1; LB=-100; UB =100; D =30; case 'F2' FitF = @F2; LB=-10; UB =10; D =30; case 'F3' FitF = @F3; LB=0; UB=1; D=3; end end % F1 function R = F1(x) R=sum(x.^2); end % F2 function R = F2(x) R=sum(abs(x))+prod(abs(x)); end 2.) POA File function[Best_Solution,Best_Location,Sol_con_Curve]=POA(PopSize,MaxT,LB,UB,D,FitF) LB=ones(1,D).*(LB); % Lower limit UB=ones(1,D).*(UB); % Upper limit % POPULATION INITIALIZATION PHASE for i=1:D X(:,i) = LB(i)+rand(PopSize,1).*(UB(i) ...

Pelican Optimization Algorithm || Step-By-Step || with Example ~xRay Pixy

Image
Learn Pelican Optimization Algorithm Step-By-Step with Examples. Video Chapters: Introduction: 00:00 Pelicans Behaviors: 00:34 Pelicans Hunting Behavior: 01:47 Pelican Optimization Algorithm: 03:18 Pelican Optimization Algorithm Steps: 06:36 Conclusion: 12:35

Whale Optimization Algorithm Code Implementation || WOA CODE || ~xRay Pixy

Image
Whale Optimization Algorithm Code Implementation Whale Optimization Algorithm Code Files function obj_fun(test_fun) switch test_fun     case 'F1'         x = -100:2:100; y=x;     case 'F2'         x = -10:2:10; y=x; end end function [LB,UB,D,FitFun]=test_fun_info(C) switch C     case 'F1'         FitFun = @F1;         LB = -100;          UB = 100;         D = 30;     case 'F2'         FitFun = @F2;         LB = -10;         UB = 10;         D = 30; end % F1 Test Function     function r = F1(x)         r = sum(x.^2);     end % F2 Test Function     function r = F2(x)         r = sum(abs(x))+prod(abs(x));     end end function Position = initialize(Pop_Size,D,UB,LB) SS_Bo...
More posts