Posts

Showing posts from 2023

New Post

Poplar Optimization Algorithm || Step-By-Step || ~xRay Pixy

Image
The Poplar Optimization Algorithm (POA) is a nature-inspired optimization method based on how poplar trees reproduce. It uses sexual propagation (seed dispersal by wind) for exploration and asexual reproduction (cutting and regrowth) for exploitation. Mutation and chaos factors help maintain diversity and prevent premature convergence, making POA efficient for solving complex optimization problems. Learn the Poplar Optimization Algorithm Step-By-Step using Examples. Video Chapters: Poplar Optimization Algorithm (POA) 00:00 Introduction 02:12 POA Applications 03:32 POA Steps 05:50 Execute Algorithm 1 13:45 Execute Algorithm 2 16:38 Execute Algorithm 3 18:15 Conclusion Main Points of the Poplar Optimization Algorithm (POA) Nature-Inspired Algorithm ā€“ Based on the reproductive mechanisms of poplar trees. Two Key Processes : Sexual Propagation (Seed Dispersal) ā€“ Uses wind to spread seeds, allowing broad exploration. Asexual Reproduction (Cuttings) ā€“ Strong branches grow ...

Quantum Cat Swarm Optimization Algorithm || Step-By-Step || ~xRay Pixy

Image
Learn Quantum Cat Swarm Optimization Algorithm Step-By-Step using Example Video Chapters: QCSO 00:00 Introduction 01:29 Cat Swarm Optimization 06:34 Quantum Cat Swarm Optimization 08:46 Quantum Computing Principles 12:12  What is Quantum Bit (Qubit)? 12:46 Quantum Population Initialization 16:26 QCSO Advantages 17:05 QCSO Applications 17:20 Conclusion ns 17:20 Conclusion

Soft Computing - Neural Networks || Module 2 || ~xRay Pixy

Image
Video Chapters: Soft Computing Module 2 - Neural Networks 00:00 Introduction 00:39 Topics Covered in Video 01:19 Neural Network Basics 05:12 Problem 01 - Calculate Net Input to Output Neuron 06:33 Artificial Neural Network Terminologies 06:54 Weights 07:59 Bias 08:13 Threshold 08:33 Learning Rate 08:49 Momemtum Factor 09:03 Problem 02 - Calculate Output of Neuron (Y) using Activation Function 09:30 Activation Function 12:42 Problem 02 - Solution 15:25 Neural Network Types 15:38 Simple Neural Network 16:08 Single Feedforward Neural Network 16:41 Multilayer Feedforward Neural Network 17:21 Single Layer Recurrent Network 17:50 Multilayer Recurrent Network 17:52 Perceptron 21:57 Multilayer Perceptron 22:15 Adaline -Its Training and Capabilities 22:59 Conclusion

Find Maxima of Function using PSO Method || Numerical Example || ~xRay Pixy

Image
Find the maximum value for the objective function using Particle Swarm Optimization Step-By-Step. Video Chapters: Find the Maxima of Function using the PSO Method 00:00 Introduction 02:18 Objective 03:17 Maximization Problem 04:22 Particle Swarm Optimization Steps 05:22 Step 1 - Objective Function 05:30 Step 2 - Position and Velocity Initialization 06:00 Step 3 - Fitness Calculation 07:06 Step 4 - Update Personal Best 07:16 Step 5 - Update Global Best 07:42 Step 6 - Position Update 10:34 Step 7 - Solution Boundary Checking 10:53 Step 8 - New Solution Evaluation 11:31 Step 9 - Update Personal Best 12:12 Step 10 - Update Global Best 13:24 Iteration 2 Start - Position Update 14:45 New Solution Boundary Checking 15:24 New Solution Fitness Calculation 15:48 Update Personal Best 16:32 Update Global Best 17:42 Conclusion Problem: Find the Maxima of the function ļæ½ ( ļæ½ ) = ļæ½ 2 + 2 ļæ½ + 11 f ( x ) = x 2 + 2 x + 11 ļæ½ ( ļæ½ ) = ļæ½ 2 + 2 ļæ½ + 11 f ( x ) = x 2 in the range -2<=x<=2 using PSO m...
More posts